Display options
Share it on

Rapid Commun Mass Spectrom. 2020 Mar 30;34(6):e8621. doi: 10.1002/rcm.8621.

Implementation and study of dopant-assisted photoionization with a miniature capillary inlet ion trap mass spectrometer.

Rapid communications in mass spectrometry : RCM

Qian Zhang, Yuan Tian, Mushage Aliang, Quan Yu, Xiaohao Wang

Affiliations

  1. Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
  2. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.

PMID: 31658505 DOI: 10.1002/rcm.8621

Abstract

RATIONALE: Dopant-assisted photoionization (PI) has been widely used in the mass spectrometric analysis of volatile compounds. Exploring simple doping methods will benefit parameter optimization and promote the application of this technique.

METHODS: A previously built miniature ion trap mass spectrometer was used to study dopant-assisted vacuum PI. The sampling system of this device was modified to provide three inlets for the simultaneous introduction of analytes, dopants, and auxiliary air. Then, dopant solution was directly injected into the ion trap chamber through a self-aspirating capillary inlet and rapidly evaporated without heating. Various dopant solutions were prepared and switched during the experiments.

RESULTS: When analyzing some aniline compounds, the signals of all analytes were improved by more than 10 times after the injection of 2% anisole solution as a dopant. In addition, anisole can provide analyte signals more than three times stronger than those provided by the other dopants. On the basis of the ionization energy selectivity of dopant-assisted PI, some isomers in the mass spectrometric analysis were distinguished using different additives.

CONCLUSIONS: In general, liquid doping is as feasible and as effective as other traditional methods, and using appropriate dopants with high PI efficiency or feeding more dopants contributes to the ionization of analytes. The proposed method also offers several unique merits, such as simple operation, low consumption, and smooth switching with minimal residue.

© 2019 John Wiley & Sons, Ltd.

References

  1. Driscoll JN. Evaluation of a new photoionization detector for organic compounds. J Chromatogr. 1977;134(1):49-55. - PubMed
  2. Langhorst ML. Photoionization detector sensitivity of organic compounds. J Chromatogr Sci. 1981;19(2):98-103. - PubMed
  3. Covey TR, Thomson BA, Schneider BB. Atmospheric pressure ion sources. Mass Spectrom Rev. 2009;28(6):870-897. - PubMed
  4. Raffaelli A, Saba A. Atmospheric pressure photoionization mass spectrometry. Mass Spectrom Rev. 2003;22(5):318-331. - PubMed
  5. Baim MA, Eatherton RL, Hill HH. Ion mobility detector for gas chromatography with a direct photoionization source. Anal Chem. 1983;55(11):1761-1766. - PubMed
  6. Robb DB, Covey TR, Bruins AP. Atmospheric pressure photoionization: An ionization method for liquid chromatography−mass spectrometry. Anal Chem. 2000;72(15):3653-3659. - PubMed
  7. Kauppila TJ, Kuuranne T, Meurer EC, Eberlin MN, Kotiaho T, Kostiainen R. Atmospheric pressure photoionization mass spectrometry. Ionization mechanism and the effect of solvent on the ionization of naphthalenes. Anal Chem. 2002;74(21):5470-5479. - PubMed
  8. Borsdorf H, Eiceman GA. Ion mobility spectrometry: Principles and applications. Appl Spectrosc Rev. 2006;41(4):323-375. - PubMed
  9. Kauppila TJ, Syage JA, Benter T. Recent developments in atmospheric pressure photoionization-mass spectrometry. Mass Spectrom Rev. 2017;36(3):423-449. - PubMed
  10. Marchi I, Rudaz S, Veuthey JL. Atmospheric pressure photoionization for coupling liquid-chromatography to mass spectrometry: A review. Talanta. 2009;78(1):1-18. - PubMed
  11. Cheng S, Dou J, Wang W, et al. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives. Anal Chem. 2013;85(1):319-326. - PubMed
  12. Tan GB, Gao W, Huang ZX, et al. Vacuum ultraviolet single photon ionization time-of-flight mass spectrometer. Chin J Anal Chem. 2011;39(10):1470-1475. - PubMed
  13. Yang B, Zhang H, Shu J, et al. Vacuum-ultraviolet-excited and CH2Cl2/H2O-amplified ionization-coupled mass spectrometry for oxygenated organics analysis. Anal Chem. 2018;90(2):1301-1308. - PubMed
  14. Yamamoto Y, Kanno N, Tonokura K, Yabushita A, Kawasaki M. Membrane introduction system for trace analysis of volatile organic compounds using a single photon ionization time-of-flight mass spectrometer. Int J Mass Spectrom. 2010;296(1-3):25-29. - PubMed
  15. Wang Y, Jiang J, Hua L, et al. High-pressure photon ionization source for TOFMS and its application for online breath analysis. Anal Chem. 2016;88(18):9047-9055. - PubMed
  16. Wang S, Wang W, Li H, Xing Y, Hou K, Li H. Rapid on-site detection of illegal drugs in complex matrix by thermal desorption acetone-assisted photoionization miniature ion trap mass spectrometer. Anal Chem. 2019;91(6):3845-3851. - PubMed
  17. Kauppila TJ, Kostiainen R, Bruins AP. Anisole, a new dopant for atmospheric pressure photoionization mass spectrometry of low proton affinity, low ionization energy compounds. Rapid Commun Mass Spectrom. 2004;18(7):808-815. - PubMed
  18. Zhou Q, Li J, Wang B, Wang S, Li H, Chen J. Selectivity improvement of positive photoionization ion mobility spectrometry for rapid detection of organophosphorus pesticides by switching dopant concentration. Talanta. 2018;176:247-252. - PubMed
  19. Mirabelli MF, Zenobi R. Solid-phase microextraction coupled to capillary atmospheric pressure photoionization-mass spectrometry for direct analysis of polar and nonpolar compounds. Anal Chem. 2018;90(8):5015-5022. - PubMed
  20. Snyder DT, Pulliam CJ, Ouyang Z, Cooks RG. Miniature and fieldable mass spectrometers: Recent advances. Anal Chem. 2016;88(1):2-29. - PubMed
  21. Zhang WP, Wang X, Xia Y, Ouyang Z. Ambient ionization and miniature mass spectrometry systems for disease diagnosis and therapeutic monitoring. Theranostics. 2017;7(12):2968-2981. - PubMed
  22. Markus H, Laura LR, Ville S, et al. Microchip for combining gas chromatography or capillary liquid chromatography with atmospheric pressure photoionization-mass spectrometry. Anal Chem. 2007;79(13):4994-4999. - PubMed
  23. Kersten H, Kroll K, Haberer K, et al. Design study of an atmospheric pressure photoionization Interface for GC-MS. J Am Soc Mass Spectrom. 2016;27(4):607-614. - PubMed
  24. Liu C, Yang J, Wang J, et al. Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry: Rapid analysis of chemicals in complex matrices. J Am Soc Mass Spectrom. 2016;27(10):1597-1605. - PubMed
  25. Quan Y, Kai N, Fei T, Wang XH. Application of capillary introduction mass spectrometer to direct analysis of liquid. Chin J Anal Chem. 2013;41(8):1287-1290. - PubMed
  26. Lu X, Yu Q, Zhang Q, et al. Direct analysis of organic compounds in liquid using a miniature photoionization ion trap mass spectrometer with pulsed carrier-gas capillary inlet. J Am Soc Mass Spectrom. 2017;28(8):1702-1708. - PubMed
  27. Yu Q, Zhang Q, Lu X, Qian X, Ni K, Wang X. Developing a vacuum electrospray source to implement efficient atmospheric sampling for miniature ion trap mass spectrometer. Anal Chem. 2017;89(23):12938-12944. - PubMed
  28. Robb DB, Blades MW. Effects of solvent flow, dopant flow, and lamp current on dopant-assisted atmospheric pressure photoionization (DA-APPI) for LC-MS. Ionization via proton transfer. J Am Soc Mass Spectrom. 2005;16(8):1275-1290. - PubMed
  29. Robb DB, Blades MW. Factors affecting primary ionization in dopant-assisted atmospheric pressure photoionization (DA-APPI) for LC/MS. J Am Soc Mass Spectrom. 2006;17(2):130-138. - PubMed
  30. Laughlin BC, Mulligan CC, Cooks RG. Atmospheric pressure ionization in a miniature mass spectrometer. Anal Chem. 2005;77(9):2928-2939. - PubMed
  31. Tubaro M, Marotta E, Seraglia R, Traldi P. Atmospheric pressure photoionization mechanisms. 2. The case of benzene and toluene. Rapid Commun Mass Spectrom. 2003;17(21):2423-2429. - PubMed

Publication Types

Grant support