Display options
Share it on

Rapid Commun Mass Spectrom. 2020 May 30;34(10):e8645. doi: 10.1002/rcm.8645.

High-resolution mass spectrometry for future space missions: Comparative analysis of complex organic matter with LAb-CosmOrbitrap and laser desorption/ionization Fourier transform ion cyclotron resonance.

Rapid communications in mass spectrometry : RCM

Laura Selliez, Julien Maillard, Barnabe Cherville, Thomas Gautier, Laurent Thirkell, Bertrand Gaubicher, Isabelle Schmitz-Afonso, Carlos Afonso, Christelle Briois, Nathalie Carrasco

Affiliations

  1. Laboratoire de physique et Chimie de l'Environnement et de l'Espace (LPC2E), Orléans, France.
  2. Laboratoire Atmosphères, Milieux et Observations Spatiales (LATMOS), Guyancourt, France.
  3. Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France.

PMID: 31671213 DOI: 10.1002/rcm.8645

Abstract

RATIONALE: Mass spectrometers are regularly boarded on spacecraft for the exploration of the Solar System. A better understanding of the origin, distribution and evolution of organic matter and its relationships with inorganic matter in different extra-terrestrial environments requires the development of innovative space tools, described as Ultra-High-Resolution Mass Spectrometry (UHRMS) instruments.

METHODS: Analyses of a complex organic material simulating extraterrestrial matter (Titan's tholins) are performed with a homemade space-designed Orbitrap™ equipped with a laser ablation ionization source at 266 nm: the LAb-CosmOrbitrap. Mass spectra are obtained using only one laser shot and transient duration of 838 ms. A comparison is made on the same sample with a laboratory benchmark mass spectrometer: a Fourier Transform Ion Cyclotron Resonance equipped with a laser desorption ionization source at 355 nm (LDI-FTICR) allowing accumulation of 20,000 laser shots.

RESULTS: Mass spectra and attributions of molecular formulae based on the peaks detected by both techniques show significant similarities. Detection and identification of the same species are validated. The formation of clusters ions with the LAb-CosmOrbitrap is also presented. This specific feature brings informative and unusual indirect detections about the chemical compounds constituting Titan's tholins. In particular, the detection of HCN confirms previous results obtained with laboratory Electrospray Ionization (ESI)-UHRMS studies about the understanding of polymeric patterns for the formation of tholins.

CONCLUSIONS: The capabilities of the LAb-CosmOrbitrap to decipher complex organic mixtures using single laser shot and a short transient are highlighted. In agreement with results provided by a commercial FTICR instrument in the laboratory, we demonstrate in this work the relevance of a space laser-CosmOrbitrap instrument for future planetary exploration.

© 2019 John Wiley & Sons, Ltd.

References

  1. Niemann HB, Atreya SK, Demick JE, et al. Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J Geophys Res Planets. 2010;115, (E12006). https://doi.org/10.1029/2010JE003659 - PubMed
  2. Balsiger H, Altwegg K, Bochsler P, et al. Rosina - Rosetta orbiter spectrometer for ion and neutral analysis. Space Sci Rev. 2007;128:745-801. https://doi.org/10.1007/s11214-006-8335-3 - PubMed
  3. Denisov E, Damoc E, Lange O, Makarov A. Orbitrap mass spectrometry with resolving powers above 1,000,000. Eugene N. Nikolaev 65th Birthday Honor Issue. Int J Mass Spectrom. 2012;325-327:80-85. https://doi.org/10.1016/j.ijms.2012.06.009 - PubMed
  4. Nikolaev EN, Boldin IA, Jertz R, Baykut G. Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J Am Soc Mass Spectrom. 2011;22(7):1125-1133. https://doi.org/10.1007/s13361-011-0125-9 - PubMed
  5. Smith DF, Podgorski DC, Rodgers RP, Blakney GT, Hendrickson CL. 21 tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Anal Chem. 2018;90(3):2041-2047. https://doi.org/10.1021/acs.analchem.7b04159 - PubMed
  6. Makarov A. Electrostatic axially harmonic orbital trapping: A high-performance technique of mass analysis. Anal Chem. 2000;72(6):1156-1162. https://doi.org/10.1021/ac991131p - PubMed
  7. Perry RH, Cooks RG, Noll RJ. Orbitrap mass spectrometry: Instrumentation, ion motion and applications. Mass Spectrom Rev. 2008;27(6):661-699. https://doi.org/10.1002/mas.20186 - PubMed
  8. Briois C, Thissen R, Thirkell L, et al. Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype. Planet Space Sci. 2016;131:33-45. https://doi.org/10.1016/j.pss.2016.06.012 - PubMed
  9. Arevalo R Jr, Selliez L, Briois C, et al. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. Rapid Commun Mass Spectrom. 2018;32(21):1875-1886. https://doi.org/10.1002/rcm.8244 - PubMed
  10. Berry JL, Ugelow MS, Tolbert MA, Browne EC. Chemical composition of gas-phase positive ions during laboratory simulations of Titan's haze formation. ACS Earth Space Chem. 2019;3:202-211. https://doi.org/10.1021/acsearthspacechem.8b00139 - PubMed
  11. Coll P, Coscia D, Smith N, et al. Experimental laboratory simulation of Titan's atmosphere: Aerosols and gas phase. Planet Space Sci. 1999;47:1331-1340. https://doi.org/10.1016/S0032-0633(99)00054-9 - PubMed
  12. Gautier T, Sebree JA, Li X, et al. Influence of trace aromatics on the chemical growth mechanisms of titan aerosol analogues. Planet Space Sci. 2017;140:27-34. https://doi.org/10.1016/j.pss.2017.03.012 - PubMed
  13. Hörst SM, Yoon YH, Ugelow MS, et al. Laboratory investigations of titan haze formation: In situ measurement of gas and particle composition. Icarus. 2018;301:136-151. https://doi.org/10.1016/j.icarus.2017.09.039 - PubMed
  14. Sciamma-O'Brien E, Ricketts CL, Salama F. The titan haze simulation experiment on COSmIC: Probing Titan's atmospheric chemistry at low temperature. Icarus. 2014;243:325-336. https://doi.org/10.1016/j.icarus.2014.08.004 - PubMed
  15. Sciamma-O'Brien E, Upton KT, Salama F. The titan haze simulation (THS) experiment on COSmIC. Part II ex-situ analysis of aerosols produced at low temperature. Icarus. 2017;289:214-226. https://doi.org/10.1016/j.icarus.2017.02.004 - PubMed
  16. Szopa C, Cernogora G, Boufendi L, Correia JJ, Coll P. PAMPRE: A dusty plasma experiment for Titan's tholins production and study. Planet Space Sci. 2006;54:394-404. https://doi.org/10.1016/j.pss.2005.12.012 - PubMed
  17. Gautier T, Carrasco N, Schmitz-Afonso I, et al. Nitrogen incorporation in Titan's tholins inferred by high resolution orbitrap mass spectrometry and gas chromatography-mass spectrometry. Earth Planet Sci Lett. 2014;404:33-42. https://doi.org/10.1016/j.epsl.2014.07.011 - PubMed
  18. Pernot P, Carrasco N, Thissen R, Schmitz-Afonso I. Tholinomics - Chemical analysis of nitrogen-rich polymers. Anal Chem. 2010;82(4):1371-1380. https://doi.org/10.1021/ac902458q - PubMed
  19. Somogyi A, Oh C-H, Smith MA, Lunine JI. Organic environments on Saturn's moon, titan: Simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry. J am Soc Mass Spectrom. 2005;16(6):850-859. https://doi.org/10.1016/j.jasms.2005.01.027 - PubMed
  20. Maillard J, Carrasco N, Schmitz-Afonso I, Gautier T, Afonso C. Comparison of soluble and insoluble organic matter in analogues of Titan's aerosols. Earth Planet Sci Lett. 2018;495:185-191. https://doi.org/10.1016/j.epsl.2018.05.014 - PubMed
  21. Hadamcik E, Renard J-B, Alcouffe G, Cernogora G, Levasseur-Regourd AC, Szopa C. Laboratory light-scattering measurements with Titan's aerosols analogues produced by a dusty plasma. Planet Space Sci. 2009;57(13):1631-1641. https://doi.org/10.1016/j.pss.2009.06.013 - PubMed
  22. Sciamma-O'Brien E, Carrasco N, Szopa C, Buch A, Cernogora G. Titan's atmosphere: An optimal gas mixture for aerosol production? Icarus. 2010;209:704-714. https://doi.org/10.1016/j.icarus.2010.04.009 - PubMed
  23. Carrasco N, Jomard F, Vigneron J, Etcheberry A, Cernogora G. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films. Planet Space Sci. 2016;128:52-57. https://doi.org/10.1016/j.pss.2016.05.006 - PubMed
  24. Fleury B, Carrasco N, Gautier T, et al. Influence of CO on titan atmospheric reactivity. Icarus. 2014;238:221-229. https://doi.org/10.1016/j.icarus.2014.05.027 - PubMed
  25. Barrère C, Hubert-Roux M, Lange CM, et al. Solvent-based and solvent-free characterization of low solubility and low molecular weight polyamides by mass spectrometry: A complementary approach. Rapid Commun Mass Spectrom. 2012;26(11):1347-1354. https://doi.org/10.1002/rcm.6231 - PubMed
  26. Selliez L, Briois C, Carrasco N, et al. Identification of organic molecules with a laboratory prototype based on the laser ablation-CosmOrbitrap. Planet Space Sci. 2019;170:42-51. https://doi.org/10.1016/j.pss.2019.03.003 - PubMed
  27. O'Connor PB, Mirgorodskaya E, Costello CE. High pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for minimization of ganglioside fragmentation. J am Soc Mass Spectrom. 2002;13(4):402-407. https://doi.org/10.1016/S1044-0305(02)00351-3 - PubMed
  28. Le Vot C, Afonso C, Beaugrand C, Tabet J-C. Implementation of a Penning ionization source on a FTICR instrument with ion funnel optics; 2011. https://doi.org/10.1016/j.ijms.2010.10.005 - PubMed
  29. Page JS, Tolmachev AV, Tang K, Smith RD. Theoretical and experimental evaluation of the low m/z transmission of an electrodynamic ion funnel. J am Soc Mass Spectrom. 2006;17(4):586-592. https://doi.org/10.1016/j.jasms.2005.12.013 - PubMed
  30. Kendrick E. A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem. 1963;35:2146-2154. https://doi.org/10.1021/ac60206a048 - PubMed
  31. Murray KK, Boyd RK, Eberlin MN, Langley JG, Li L, Naito Y. Definitions of terms relating to mass spectrometry (IUPAC recommendations 2013). Pure Appl Chem. 2013;85:1515-1609. https://doi.org/10.1351/PAC-REC-06-04-06 - PubMed
  32. Sleno L. The use of mass defect in modern mass spectrometry. J Mass Spectrom. 2012;47(2):226-236. https://doi.org/10.1002/jms.2953 - PubMed
  33. Bhardwaj C, Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep. 2014;31(6):756-767. https://doi.org/10.1039/C3NP70094A - PubMed
  34. Le Roy L, Altwegg K, Balsiger H, et al. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astrom Astrophys. 2015;583. https://doi.org/10.1051/0004-6361/201526450 - PubMed
  35. Cunha de Miranda B, Garcia GA, Gaie-Levrel F, et al. Molecular isomer identification of Titan's tholins organic aerosols by photoelectron/photoion coincidence spectroscopy coupled to VUV synchrotron radiation. J Phys Chem A. 2016;120(33):6529-6540. https://doi.org/10.1021/acs.jpca.6b03346 - PubMed
  36. Carrasco N, Schmitz-Afonso I, Bonnet J-Y, et al. Chemical characterization of Titan's tholins: Solubility, morphology and molecular structure revisited. J Phys Chem a. 2009;113(42):11195-11203. https://doi.org/10.1021/jp904735q - PubMed
  37. Dubois D, Carrasco N, Bourgalais J, et al. Nitrogen-containing anions and tholin growth in Titan's ionosphere: Implications for Cassini CAPS-ELS observations. Astrophys J. 2019;872, L31. https://doi.org/10.3847/2041-8213/ab05e5 - PubMed
  38. Gautier T, Schmitz-Afonso I, Touboul D, Szopa C, Buch A, Carrasco N. Development of HPLC-Orbitrap method for identification of N-bearing molecules in complex organic material relevant to planetary environments. Icarus. 2016;275:259-266. - PubMed
  39. Castellanos A, Benigni P, Hernandez DR, et al. Fast screening of polycyclic aromatic hydrocarbons using trapped ion mobility spectrometry - mass spectrometry. Anal Methods Adv Methods Appl. 2014;6(23):9328-9332. https://doi.org/10.1039/C4AY01655F - PubMed
  40. Tose LV, Benigni P, Leyva D, et al. Coupling trapped ion mobility spectrometry to mass spectrometry: Trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 2018;32(15):1287-1295. https://doi.org/10.1002/rcm.8165 - PubMed
  41. Rüger CP, Maillard J, Le Maître J, et al. Structural study of analogues of Titan's haze by trapped ion mobility coupled with a Fourier transform ion cyclotron mass spectrometer. J Am Soc Mass Spectrom. 2019;30(7):1169-1173. https://doi.org/10.1007/s13361-019-02205-7 - PubMed

Publication Types