Display options
Share it on

Sci Rep. 2019 Nov 15;9(1):16938. doi: 10.1038/s41598-019-53458-x.

Comparative genomic analysis of eutherian connexin genes.

Scientific reports

Marko Premzl

Affiliations

  1. The Australian National University Alumni, Zagreb, Croatia. [email protected].

PMID: 31729432 PMCID: PMC6858305 DOI: 10.1038/s41598-019-53458-x

Abstract

The eutherian connexins were characterized as protein constituents of gap junctions implicated in cell-cell communications between adjoining cells in multiple cell types, regulation of major physiological processes and disease pathogeneses. However, conventional connexin gene and protein classifications could be regarded as unsuitable in descriptions of comprehensive eutherian connexin gene data sets, due to ambiguities and inconsistencies in connexin gene and protein nomenclatures. Using eutherian comparative genomic analysis protocol and 35 public eutherian reference genomic sequence data sets, the present analysis attempted to update and revise comprehensive eutherian connexin gene data sets, and address and resolve major discrepancies in their descriptions. Among 631 potential coding sequences, the tests of reliability of eutherian public genomic sequences annotated, in aggregate, 349 connexin complete coding sequences. The most comprehensive curated eutherian connexin gene data set described 21 major gene clusters, 4 of which included evidence of differential gene expansions. For example, the present gene annotations initially described human CXNK1 gene and annotated 22 human connexin genes. Phylogenetic tree calculations and calculations of pairwise nucleotide sequence identity patterns proposed revised and updated phylogenetic classification of eutherian connexin genes. Therefore, the present study integrating gene annotations, phylogenetic analysis and protein molecular evolution analysis proposed new nomenclature of eutherian connexin genes and proteins.

References

  1. Nucleic Acids Res. 2019 Jan 8;47(D1):D745-D751 - PubMed
  2. Genome Res. 2004 Nov;14(11):2235-44 - PubMed
  3. Biochim Biophys Acta. 2013 Jan;1828(1):4-14 - PubMed
  4. PLoS Biol. 2011 Mar;9(3):e1000602 - PubMed
  5. Genomics. 2006 Feb;87(2):265-74 - PubMed
  6. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  7. Biol Chem. 2002 May;383(5):725-37 - PubMed
  8. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  9. Cardiovasc Res. 2004 May 1;62(2):228-32 - PubMed
  10. Biochim Biophys Acta. 2012 Aug;1818(8):1823-30 - PubMed
  11. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 - PubMed
  12. Eur J Cell Biol. 2009 Feb;88(2):65-77 - PubMed
  13. Bioinformatics. 2014 Sep 15;30(18):2654-5 - PubMed
  14. Physiol Rev. 2011 Oct;91(4):1393-445 - PubMed
  15. Science. 2013 Feb 8;339(6120):662-7 - PubMed
  16. Nucleic Acids Res. 2016 Jan 4;44(D1):D58-66 - PubMed
  17. Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):5-8 - PubMed
  18. Nature. 2001 Feb 1;409(6820):614-8 - PubMed
  19. Heliyon. 2018 Jun 06;4(6):e00647 - PubMed
  20. Nucleic Acids Res. 2018 Jan 4;46(D1):D48-D51 - PubMed
  21. Genome Biol. 2001;2(11):REPORTS4027 - PubMed
  22. Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4795-800 - PubMed
  23. Genomics. 1991 May;10(1):250-6 - PubMed
  24. Nature. 2011 Oct 12;478(7370):476-82 - PubMed
  25. Genomics. 2002 Apr;79(4):464-70 - PubMed
  26. Curr Opin Cell Biol. 2007 Oct;19(5):521-8 - PubMed
  27. Cell Commun Adhes. 2003 Jul-Dec;10(4-6):173-80 - PubMed
  28. Biol Chem. 2007 Mar;388(3):253-64 - PubMed
  29. Nucleic Acids Res. 2019 Jan 8;47(D1):D23-D28 - PubMed
  30. Nature. 2015 Oct 1;526(7571):29-31 - PubMed
  31. Methods Mol Biol. 2006;338:69-89 - PubMed
  32. FEBS Lett. 2008 Jan 23;582(2):165-70 - PubMed
  33. PLoS Biol. 2009 May 5;7(5):e1000112 - PubMed
  34. BMC Evol Biol. 2019 Jan 11;19(1):21 - PubMed
  35. FEBS Lett. 2014 Apr 17;588(8):1205-11 - PubMed
  36. Biochim Biophys Acta. 2005 Jun 10;1711(2):99-125 - PubMed
  37. Nucleic Acids Res. 2019 Jan 8;47(D1):D84-D88 - PubMed
  38. Genome Res. 2012 Sep;22(9):1760-74 - PubMed
  39. Annu Rev Cell Dev Biol. 2004;20:811-38 - PubMed
  40. BMC Biol. 2018 Aug 20;16(1):94 - PubMed
  41. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19428-33 - PubMed
  42. J Membr Biol. 2003 Jul 1;194(1):59-76 - PubMed
  43. Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773 - PubMed
  44. Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):15-28 - PubMed
  45. Nature. 2001 Feb 15;409(6822):860-921 - PubMed
  46. BMC Genomics. 2016 Mar 31;17:268 - PubMed
  47. Nature. 2004 Oct 21;431(7011):931-45 - PubMed
  48. Biochim Biophys Acta. 2012 Aug;1818(8):1844-65 - PubMed
  49. Nucleic Acids Res. 2019 Jan 8;47(D1):D94-D99 - PubMed
  50. Cell Mol Life Sci. 2006 May;63(10):1125-40 - PubMed
  51. J Gen Physiol. 2003 Oct;122(4):389-405 - PubMed
  52. PLoS Comput Biol. 2014 Dec 04;10(12):e1003998 - PubMed
  53. BMC Bioinformatics. 2009 Dec 15;10:421 - PubMed
  54. J Cell Sci. 2003 Nov 15;116(Pt 22):4479-81 - PubMed
  55. Cold Spring Harb Perspect Biol. 2009 Jul;1(1):a002576 - PubMed
  56. Nature. 2002 Dec 5;420(6915):520-62 - PubMed
  57. Science. 1999 Feb 19;283(5405):1176-80 - PubMed

Publication Types