Display options
Share it on

J Mass Spectrom. 2019 Dec;54(12):987-1002. doi: 10.1002/jms.4479. Epub 2019 Dec 11.

Elucidation of artefacts in proton transfer reaction time-of-flight mass spectrometers.

Journal of mass spectrometry : JMS

Jorge Iván Salazar Gómez, Christian Klucken, Martha Sojka, Liudmyla Masliuk, Thomas Lunkenbein, Robert Schlögl, Holger Ruland

Affiliations

  1. Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany.
  2. Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.

PMID: 31758619 DOI: 10.1002/jms.4479

Abstract

We present an effective procedure to differentiate instrumental artefacts, such as parasitic ions, memory effects, and real trace impurities contained in inert gases. Three different proton transfer reaction mass spectrometers were used in order to identify instrument-specific parasitic ions. The methodology reveals new nitrogen- and metal-containing ions that up to date have not been reported. The parasitic ion signal was dominated by [N

© 2019 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd.

Keywords: artefacts; industrial gases; parasitic ions; proton transfer reaction time-of-flight mass spectrometry; volatile organic compounds

References

  1. Munson MSB, Field FH. Chemical ionization mass spectrometry. I. General introduction. J Am Chem Soc. 1966;88:2621-2630. - PubMed
  2. Munson B. CIMS, Chemistry in mass spectrometry. Int J Mass Spectrom. 2015;377:502-506. - PubMed
  3. Lindinger W, Hansel A, Jordan A. Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev. 1998;27:347-354. - PubMed
  4. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W. Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int J Mass Spectrom Ion Processes. 1995;149-150:609-619. - PubMed
  5. Yeretzian C, Jordan A, Lindinger W. Analysing the headspace of coffee by proton-transfer-reaction mass-spectrometry. Int J Mass Spectrom. 2003;223-224:115-139. - PubMed
  6. Romano A, Fischer L, Herbig J, et al. Wine analysis by FastGC proton-transfer reaction-time-of-flight-mass spectrometry. Int J Mass Spectrom. 2014;369:81-86. - PubMed
  7. Masi E, Romani A, Pandolfi C, Heimler D, Mancuso S. PTR-TOF-MS analysis of volatile compounds in olive fruits. J Sci Food Agric. 2015;95(7):1428-1434. - PubMed
  8. Lagg A, Taucher J, Hansel A, Lindinger W. Applications of proton transfer reactions to gas analysis. Int J Mass Spectrom Ion Processes. 1994;134:55-66. - PubMed
  9. Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Processes. 1998;173:191-241. - PubMed
  10. Hayward S, Hewitt CN, Sartin JH, Owen SM. Performance characteristics and applications of a proton transfer reaction-mass spectrometer for measuring volatile organic compounds in ambient air. Environ Sci Technol. 2002;36(7):1554-1560. - PubMed
  11. D'Anna B, Wisthaler A, Andreasen O, et al. Atmospheric chemistry of C3-C6 cycloalkanecarbaldehydes. J Phys Chem A. 2005;109(23):5104-5118. - PubMed
  12. de Gouw J, Warneke C. Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev. 2007;26(2):223-257. - PubMed
  13. Biasioli F, Gasperi F, Odorizzi G, et al. PTR-MS monitoring of odour emissions from composting plants. Int J Mass Spectrom. 2004;239:103-109. - PubMed
  14. Clementschitsch F, Bayer K. Improvement of bioprocess monitoring: development of novel concepts. Microb Cell Fact. 2006;5:19. - PubMed
  15. Morken AK, Nenseter B, Pedersen S, et al. Emission results of amine plant operations from MEA testing at the CO2 Technology Centre Mongstad. 12th Int Conf Greenhouse Gas Contr Technol, Ghgt-12. 2014;63:6023-6038. - PubMed
  16. Sanchez-Lopez JA, Zimmermann R, Yeretzian C. Insight into the time-resolved extraction of aroma compounds during espresso coffee preparation: online monitoring by PTR-ToF-MS. Anal Chem. 2014;86(23):11696-11704. - PubMed
  17. Herbig J, Gutmann R, Winkler K, Hansel A, Sprachmann G. Real-time monitoring of trace gas concentrations in syngas. Oil Gas Sci Technol - Rev IFP Energies nouvelles. 2013;69:363-372. - PubMed
  18. Agarwal B, Jurschik S, Sulzer P, et al. Detection of isocyanates and polychlorinated biphenyls using proton transfer reaction mass spectrometry. Rapid Commun Mass Spectrom. 2012;26:983-989. - PubMed
  19. Bukhtiyarov VI, Nizovskii AI, Bluhm H, et al. Combined in situ XPS and PTRMS study of ethylene epoxidation over silver. J Catal. 2006;238:260-269. - PubMed
  20. Španĕl P, Smith D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of alcohols. Int J Mass Spectrom Ion Processes. 1997;167-168:375-388. - PubMed
  21. Tani A, Hayward S, Hewitt CN. Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int J Mass Spectrom. 2003;223-224:561-578. - PubMed
  22. Graus M, Müller M, Hansel A. High resolution PTR-TOF: quantification and formula confirmation of VOC in real time. J Am Soc Mass Spectrom. 2010;21(6):1037-1044. - PubMed
  23. Blake RS, Whyte C, Hughes CO, Ellis AM, Monks PS. Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Anal Chem. 2004;76:3841-3845. - PubMed
  24. Pang X. Biogenic volatile organic compound analyses by PTR-TOF-MS: calibration, humidity effect and reduced electric field dependency. J Environ Sci (China). 2015;32:196-206. - PubMed
  25. Brown P, Watts P, Märk TD, Mayhew CA. Proton transfer reaction mass spectrometry investigations on the effects of reduced electric field and reagent ion internal energy on product ion branching ratios for a series of saturated alcohols. Int J Mass Spectrom. 2010;294:103-111. - PubMed
  26. Romano A, Hanna GB. Identification and quantification of VOCs by proton transfer reaction time of flight mass spectrometry: an experimental workflow for the optimization of specificity, sensitivity, and accuracy. J Mass Spectrom. 2018;53(4):287-295. - PubMed
  27. de Gouw JA, Goldan PD, Warneke C, et al. Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J Geophys Res: Atmospheres. 2003;108:4682. - PubMed
  28. Yuan B, Koss A, Warneke C, et al. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere Atmos. Meas Tech. 2016;9:2735-2752. - PubMed
  29. Bukhtiyarova M, Lunkenbein T, Kähler K, Schlögl R. Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett. 2017;147:416-427. - PubMed
  30. Thornberry T, Murphy DM, Thomson DS, et al. Measurement of aerosol organic compounds using a novel collection/thermal-desorption PTR-ITMS instrument. Aerosol Sci Tech. 2009;43:486-501. - PubMed
  31. Crespo E, Devasena S, Sikkens C, Centeno R, Cristescu SM, Harren FJ. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles. Rapid Commun Mass Spectrom. 2012;26:990-996. - PubMed
  32. Sulzer P, Hartungen E, Hanel G, et al. A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): high speed due to extreme sensitivity. Int J Mass Spectrom. 2014;368:1-5. - PubMed
  33. Smith D, Adams NG, Miller TM. A laboratory study of the reactions of N+, N2+, N3+, N4+, O+, O2+, and NO+ ions with several molecules at 300 K. J Chem Phys. 1978;69:308-318. - PubMed
  34. Bierbaum VM, Kaufman F. Kinetics of the reactions of N2H+, N4+, and N3+ with H2O in the gas phase. J Chem Phys. 1974;61:3804-3809. - PubMed
  35. Fehsenfeld FC, Schmeltekopf AL, Ferguson EE. Thermal-energy ion-neutral reaction rates. VII. Some hydrogen-atom abstraction reactions. J Chem Phys. 1967;46:2802-2808. - PubMed
  36. Howorka F, Lindinger W, Varney RN. Reaction-rate constants in steady-state hollow-cathode discharges: N2 + H2O Reactions. J Chem Phys. 1974;61:1180-1188. - PubMed
  37. Milligan DB, Wilson PF, Freeman CG, Meot-Ner M, McEwan MJ. Dissociative proton transfer reactions of H3+, N2H+, and H3O+ with acyclic, cyclic, and aromatic hydrocarbons and nitrogen compounds, and astrochemical implications. J Phys Chem A. 2002;106:9745-9755. - PubMed
  38. Warneke C, de Gouw JA, Kuster WC, Goldan PD. Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method R. Fall. Environ Sci Technol. 2003;37:2494-2501. - PubMed
  39. Müller M, Mikoviny T, Feil S, et al. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution. Atmos Meas Tech. 2014;7:3763-3772. - PubMed
  40. Norman M, Hansel A, Wisthaler A. O2+ as reagent ion in the PTR-MS instrument: detection of gas-phase ammonia. Int J Mass Spectrom. 2007;265:382-387. - PubMed
  41. Lin CS, Liou NW, Chang PE, Yang JC, Sun E. Fugitive coke oven gas emission profile by continuous line averaged open-path Fourier transform infrared monitoring. J Air Waste Manage Assoc. 2007;57(4):472-479. - PubMed
  42. Ekgauz VI, Pokryshkin KV, Tretiakova GD, et al. Removal of ammonia from coke-oven gas at PAO Severstal' by a circulatory phosphate method. Coke Chem. 2016;59:92-100. - PubMed
  43. Awe OW, Zhao YQ, Nzihou A, Minh DP, Lyczko N. A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valor. 2017;8:267-283. - PubMed
  44. Adams NG, Smith D, Paulson JF. An experimental survey of the reactions of NHn+ ions (n = 0 to 4) with several diatomic and polyatomic molecules at 300 K. J Chem Phys. 1980;72:288-297. - PubMed
  45. Albritton DL, Dotan I, Lindinger W, McFarland M, Tellinghuisen J, Fehsenfeld FC. Effects of ion speed distributions in flow-drift tube studies of ion-neutral reactions. J Chem Phys. 1977;66:410-421. - PubMed
  46. McFarland M, Albritton DL, Fehsenfeld FC, Ferguson EE, Schmeltekopf AL. Flow-drift technique for ion mobility and ion-molecule reaction rate constant measurements. II. Positive ion reactions of N+, O+, and H2+ with O2 and O+ with N2 from thermal to ~2 eV. J Chem Phys. 1973;59:6620-6628. - PubMed
  47. Müller M, Graus M, Ruuskanen TM, et al. First eddy covariance flux measurements by PTR-TOF. Atmos Meas Tech. 2010;3(2):387-395. - PubMed
  48. Millar TJ, Farquhar PRA, Willacy K. The UMIST database for astrochemistry 1995. Astron Astrophys Suppl Ser. 1997;121:139-185. - PubMed
  49. Le Teuff YH, Millar TJ, Markwick AJ. The UMIST database for astrochemistry 1999. Astron Astrophys Suppl Ser. 2000;146:157-168. - PubMed
  50. Jobson BT, McCoskey JK. Sample drying to improve HCHO measurements by PTR-MS instruments: laboratory and field measurements. Atmos Chem Phys. 2010;10:1821-1835. - PubMed
  51. Hansel A, Singer W, Wisthaler A, Schwarzmann M, Lindinger W. Energy dependencies of the proton transfer reactions H3O(+)+CH2O double left right arrow CH2OH++H2O. Int J Mass Spectrom. 1997;167:697-703. - PubMed
  52. Inomata S, Tanimoto H, Kameyama S, et al. Technical note: determination of formaldehyde mixing ratios in air with PTR-MS: laboratory experiments and field measurements. Atmos Chem Phys. 2008;8:273-284. - PubMed
  53. Vlasenko A, Macdonald AM, Sjostedt SJ, Abbatt JPD. Formaldehyde measurements by Proton transfer reaction - Mass Spectrometry (PTR-MS): correction for humidity effects. Atmos Meas Tech. 2010;3:1055-1062. - PubMed
  54. Jankowski MJ, Olsen R, Nielsen CJ, Thomassen Y, Molander P. The applicability of proton transfer reaction-mass spectrometry (PTR-MS) for determination of isocyanic acid (ICA) in work room atmospheres. Environ Sci: Processes Impacts. 2014;16(10):2423-2431. - PubMed
  55. Pavageau M-P, Pécheyran C, Krupp EM, Morin A, Donard OFX. Volatile metal species in coal combustion flue gas. Environ Sci Technol. 2002;36(7):1561-1573. - PubMed

Publication Types

Grant support