Display options
Share it on

Nat Commun. 2019 Nov 08;10(1):5090. doi: 10.1038/s41467-019-12815-0.

Topological control of extreme waves.

Nature communications

Giulia Marcucci, Davide Pierangeli, Aharon J Agranat, Ray-Kuang Lee, Eugenio DelRe, Claudio Conti

Affiliations

  1. Department of Physics, University Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy. [email protected].
  2. Institute for Complex Systems, Via dei Taurini 19, 00185, Rome, Italy. [email protected].
  3. Department of Physics, University Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy.
  4. Institute for Complex Systems, Via dei Taurini 19, 00185, Rome, Italy.
  5. Applied Physics Department, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
  6. Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300, Taiwan.

PMID: 31704911 PMCID: PMC6841676 DOI: 10.1038/s41467-019-12815-0

Abstract

From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, transitions between extreme waves are allowed. However, these have never been experimentally observed because control strategies are still missing. We introduce the new concept of topological control based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions through Riemann theta functions. We demonstrate the concept experimentally by reporting observations of supervised transitions between waves with different genera. Considering the box problem in a focusing photorefractive medium, we tailor the time-dependent nonlinearity and dispersion to explore each region in the state diagram of the nonlinear wave propagation. Our result is the first realization of topological control of nonlinear waves. This new technique casts light on shock and rogue waves generation and can be extended to other nonlinear phenomena.

References

  1. Nature. 2007 Dec 13;450(7172):1054-7 - PubMed
  2. Phys Rev E. 2019 Jan;99(1-1):012207 - PubMed
  3. Sci Rep. 2015 May 20;5:10380 - PubMed
  4. Opt Lett. 2018 Jun 15;43(12):2864-2867 - PubMed
  5. Phys Rev Lett. 2012 Dec 14;109(24):243902 - PubMed
  6. Phys Rev Lett. 2007 Jul 27;99(4):043903 - PubMed
  7. Opt Lett. 2013 Mar 1;38(5):790-2 - PubMed
  8. Phys Rev Lett. 2015 Aug 28;115(9):093901 - PubMed
  9. Nat Commun. 2016 Oct 07;7:13136 - PubMed
  10. Opt Lett. 2010 Aug 15;35(16):2819-21 - PubMed
  11. Phys Rev Lett. 2019 May 31;122(21):214502 - PubMed
  12. Phys Rev E. 2018 Aug;98(2-1):022219 - PubMed
  13. Phys Rev Lett. 2005 Nov 11;95(20):204101 - PubMed
  14. Phys Rev Lett. 2017 Jul 21;119(3):033901 - PubMed
  15. Phys Rev Lett. 2011 Dec 16;107(25):253901 - PubMed
  16. Nat Commun. 2016 Feb 24;7:10674 - PubMed
  17. Phys Rev E. 2019 Feb;99(2-1):022215 - PubMed
  18. Phys Rev Lett. 2011 Jul 29;107(5):053901 - PubMed
  19. Phys Rev Lett. 2017 Jun 23;118(25):254101 - PubMed

Publication Types