Display options
Share it on

Rapid Commun Mass Spectrom. 2020 Apr 30;34(8):e8671. doi: 10.1002/rcm.8671.

Improved three-filament thermal ionization mass spectrometry ion source for isotope ratio determination of two samples.

Rapid communications in mass spectrometry : RCM

Adrian Pacek, Tomasz Pieńkos, Maciej Czarnacki, Stanisław Hałas, Andrzej Pelc

Affiliations

  1. Mass Spectrometry Laboratory, Maria Curie-Sk?odowska University, pl. Marii Curie-Sk?odowskiej 1, Lublin, 20-031, Poland.

PMID: 31760670 DOI: 10.1002/rcm.8671

Abstract

RATIONALE: In order to make a single-filament thermal ionization mass spectrometry (TIMS) instrument more versatile and efficient in element isotope analysis, a multifilament ion source has to be employed. In the currently used three-filament ion sources, the same sample must be loaded on all the evaporator filaments, because of the possibility of cross-contamination.

METHODS: The elimination of cross-contamination in a TIMS three-filament ion source was achieved by installation of a wide ionizer filament (ribbon shape) perpendicular to the extracting slit plane between two parallel evaporators. In such a configuration, the ionizer filament serves also as a screen separating two evaporator filaments on which two different samples can be loaded.

RESULTS: The lack of cross-contamination (on a measurement uncertainty 1σ level of 0.3‰) has been demonstrated by measurements of the isotope ratios of a potassium chloride sample (

CONCLUSIONS: The small change of the ionizer filament configuration significantly improves the functionality of the ion source. The proposed modification enables us to perform alternating isotope analyses under the same working conditions for two different samples (e.g. studied sample and standard).

© 2019 John Wiley & Sons, Ltd.

References

  1. Carlson RW. Thermal ionization mass spectrometry. In: Holland H, Turekian KE, eds. Treatise on Geochemistry. 2nd ed. Elsevier; 2013:337-354. - PubMed
  2. Kasemann SA, Jeffcoate AB, Elliott T. Lithium isotope composition of basalt glass reference material. Anal Chem. 2005;77(16):5251-5257. - PubMed
  3. Pelc A. Generation of negative ions from SF6 gas by means of hot surface ionization. Rapid Commun Mass Spectrom. 2012;26(5):577-582. - PubMed
  4. Pelc A, Halas S. Negative ion source for chlorine isotope ratio measurements. Rapid Commun Mass Spectrom. 2008;22:3477-3482. - PubMed
  5. Pieńkos T, Hałas S. A new negative and positive gas ion source for isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 2017;31(11):964-968. - PubMed
  6. Siegmund H, Hiess J, Sturm M, Koepf A, L'Herault C, Boulyga S. Improved TIMS data reliability and precision with new ion source design. J Anal At Spectrom. 2019;34(5):986-997. - PubMed
  7. Trinquier A, Maden C, Fauré AL, et al. More than five percent ionization efficiency by cavity source thermal ionization mass spectrometry for uranium subnanogram amounts. Anal Chem. 2019;91(9):6190-6199. - PubMed
  8. Wang S, Wang J, Lu H, Fang X, Song P, Ren T. Investigation of the crucial factors affecting accurate measurement of strontium isotope ratios by total evaporation thermal ionization mass spectrometry. Rapid Commun Mass Spectrom. 2019;33(9):857-866. - PubMed
  9. Hoefs J. Stable Isotope Geochemistry. Berlin, Germany: Springer; 2009. - PubMed
  10. IAEA Analytical Quality Control Services, Reference Materials Catalogue 2004-2005. Vienna, Austria: IAEA; 2005. - PubMed
  11. Sverjensky DA. Interpretation and prediction of triple-layer model capacitances and the structure of the oxide-electrolyte-water interface. Geochim Cosmochim Acta. 2001;65(21):3643-3655. - PubMed
  12. Platzner IT, Habfast K, Walder AJ, Goetz A. Modern Isotope Ratio Mass Spectrometry. Chichester: John Wiley & Sons; 1997. - PubMed
  13. Chan LH. Mass spectrometric techniques for the determination of lithium isotopic composition in geological material. In: de Groot PA, ed. Handbook of Stable Isotope Analytical Techniques. Vol.1. Amsterdam: Elsevier; 2004:122-141. - PubMed
  14. Tomascak PB. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Rev Mineral Geochem. 2004;55(1):153-195. - PubMed
  15. Misra S, Froelich PN. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science. 2012;335(6070):818-823. - PubMed
  16. Adams EL, Lozano CG, Duport LG, Davila AF, Fairen AG. Unraveling the history of water on Mars using lithium isotope fractionation models. 45th Lunar and Planetary Science Conference. Lunar and Planetary Institute https://www.hou.usra.edu/meetings/lpsc2014/eposter/2433.pdf. Accessed October 27, 2019. - PubMed
  17. Deng D. Li-ion batteries: Basics, progress, and challenges. Energy Sci Eng. 2015;3(5):385-418. - PubMed
  18. Craft AE, King JC. Radiation shielding options for a nuclear reactor power system landed on the lunar surface. Nucl Technol. 2010;172(3):255-272. - PubMed
  19. Haynes WM. CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press; 1981. - PubMed
  20. Heuman KG. Isotope dilution mass spectrometry. Int J Mass Spectrom Ion Processes. 1992;118-119:575-592. - PubMed
  21. Hałas S. From the discovery of radioactivity to the development of the K-Ar dating method. Geochronometria. 2012;39(3):158-166. - PubMed
  22. Humayun M, Clayton RN. Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils. Geochim Cosmochim Acta. 1995;59(10):2115-2130. - PubMed
  23. Srinivasan G, Sahijpal S, Ulyanov AA, Goswami JN. Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and 41Ca in the early solar system. Geochim Cosmochim Acta. 1996;60(10):1823-1835. - PubMed
  24. Wielandt D, Bizzarro M. A TIMS-based method for the high precision measurements of the three-isotope potassium composition of small samples. J Anal At Spectrom. 2011;26(2):366-377. - PubMed
  25. Hinton RW, Clayton RN, Olsen EJ, Davis AM. Isotopic mass fractionation of potassium in the earth compared to the bulk solar system. Abstracts of the Lunar and Planetary Science Conference. 1987;18:429-443. - PubMed
  26. Sahijpal S, Goswami JN, Davis AM, Grossman L, Lewis RS. A stellar origin for the short-lived nuclides in the early solar system. Nature. 1998;391(6667):559-561. - PubMed
  27. Upadhyay D, Scherer EE, Mezger K. Fractionation and mixing of Nd isotopes during thermal ionization mass spectrometry: Implications for high precision 142Nd/144Nd analyses. J Anal At Spectrom. 2008;23(4):561-568. - PubMed
  28. Moriguti T, Nakamura E. Precise lithium isotopic analysis by thermal ionization mass spectrometry using lithium phosphate as an ion source material. Proc Japan Acad. 1993;69B:123-128. - PubMed
  29. Xiao YK, Beary ES. High-precision isotopic measurement of lithium by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Processes. 1989;94:101-114. - PubMed
  30. You CF, Chan LH. Precise determination of lithium isotopic composition in low concentration natural samples. Geochim Cosmochim Acta. 1996;60(5):909-915. - PubMed
  31. de Laeter JR. Applications of Inorganic Mass Spectrometry. New York, NY: John Wiley & Sons; 2001. - PubMed
  32. Makishima A. Thermal Ionization Mass Spectrometry (TIMS): Silicate Digestion, Separation, and Measurement. Weinheim, Germany: Wiley-VCH; 2016. - PubMed
  33. Wildöer JWG, Harmans CJPM, van Kempen H. Observation of Landau levels at the InAs 110 surface by scanning tunneling spectroscopy. Phys Rev B. 1997;55(24):13-16. - PubMed
  34. Baikie ID, Petermann U, Speakman A, Lägel B, Dirscherl KM, Estrup PJ. Work function study of rhenium oxidation using an ultra high vacuum scanning kelvin probe. J Appl Phys. 2000;88(7):4371-4375. - PubMed
  35. Hałas S, Pacek A, Pieńkos T. Thermoemission Ion Source for Mass Spectrometer. Polish Patent. No. 70362. 2018. - PubMed
  36. Kalvas T, Tarvainen O, Ropponen T, Steczkiewicz O, Ärje J, Clark H. IBSIMU: A three-dimensional simulation software for charged particle optics. Rev Sci Instrum. 2010;81(2):02B703. - PubMed
  37. Hałas S, Skrzypek G, Meier-Augenstein W, Pelc A, Kemp HF. Inter-laboratory calibration of new silver orthophosphate comparison materials for the stable oxygen isotope analysis of phosphates. Rapid Commun Mass Spectrom. 2011;25(5):579-584. - PubMed

Publication Types

Grant support