Display options
Share it on

Biophys Rev. 2019 Dec;11(6):995-1005. doi: 10.1007/s12551-019-00603-5. Epub 2019 Nov 18.

Erythrocyte plasma membrane potential: past and current methods for its measurement.

Biophysical reviews

Melisa M Balach, Cesar H Casale, Alexis N Campetelli

Affiliations

  1. INBIAS-CONICET, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina.
  2. Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina.
  3. INBIAS-CONICET, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina. [email protected].
  4. Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, Río Cuarto, Cordoba, Argentina. [email protected].

PMID: 31741171 PMCID: PMC6874941 DOI: 10.1007/s12551-019-00603-5

Abstract

The plasma membrane functions both as a natural insulator and a diffusion barrier to the movement of ions. A wide variety of proteins transport and pump ions to generate concentration gradients that result in voltage differences, while ion channels allow ions to move across the membrane down those gradients. Plasma membrane potential is the difference in voltage between the inside and the outside of a biological cell, and it ranges from ~- 3 to ~- 90 mV. Most of the most significant discoveries in this field have been made in excitable cells, such as nerve and muscle cells. Nevertheless, special attention has been paid to some events controlled by changes in membrane potential in non-excitable cells. The origins of several blood disorders, for instance, are related to disturbances at the level of plasma membrane in erythrocytes, the structurally simplest red blood cells. The high simplicity of erythrocytes, in particular, made them perfect candidates for the electrophysiological studies that laid the foundations for understanding the generation, maintenance, and roles of membrane potential. This article summarizes the methodologies that have been used during the past decades to determine Δψ in red blood cells, from seminal microelectrodes, through the use of nuclear magnetic resonance or lipophilic radioactive ions to quantify intra and extracellular ions, to continuously renewed fluorescent potentiometric dyes. We have attempted to highlight the advantages and disadvantages of each methodology, as well as to provide a description of the technical aspects involved.

Keywords: Erythrocytes; Ion homeostasis; Microelectrodes; Plasma membrane potential; Potentiometric dyes

References

  1. J Neurosci. 2008 Sep 10;28(37):9205-17 - PubMed
  2. J Membr Biol. 2003 Sep 1;195(1):1-8 - PubMed
  3. J Physiol. 1974 Jun;239(3):519-52 - PubMed
  4. J Gen Physiol. 1964 Jan;47:585-603 - PubMed
  5. Nature. 2015 Nov 5;527(7576):59-63 - PubMed
  6. Chem Phys Lipids. 1994 Feb;69(2):137-50 - PubMed
  7. Crit Care Med. 2004 May;32(5):1240; author reply 1240-1 - PubMed
  8. Clin Cancer Res. 2005 Aug 1;11(15):5381-9 - PubMed
  9. Cytoskeleton (Hoboken). 2012 Sep;69(9):601-12 - PubMed
  10. Nature. 1988 Aug 4;334(6181):438-40 - PubMed
  11. Scand J Clin Lab Invest. 1997 Feb;57(1):59-63 - PubMed
  12. Trends Cell Biol. 2007 Jun;17(6):261-70 - PubMed
  13. APMIS. 2004 Sep;112(9):588-94 - PubMed
  14. Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4377-E4385 - PubMed
  15. Am J Physiol Heart Circ Physiol. 2000 Sep;279(3):H1421-33 - PubMed
  16. Cytometry A. 2009 Jul;75(7):593-608 - PubMed
  17. Biophys J. 1997 Mar;72(3):1220-33 - PubMed
  18. Biophys J. 1969 Feb;9(2):115-21 - PubMed
  19. Blood Transfus. 2015 Jan;13(1):143-9 - PubMed
  20. J Physiol. 1968 Apr;195(3):681-96 - PubMed
  21. J Gen Physiol. 1979 Aug;74(2):157-85 - PubMed
  22. J Membr Biol. 1986;90(2):163-75 - PubMed
  23. Respirology. 2003 Dec;8(4):432-46 - PubMed
  24. Nat Chem Biol. 2017 Apr 13;13(5):455-463 - PubMed
  25. Front Physiol. 2013 Jul 17;4:185 - PubMed
  26. J Membr Biol. 1980 Oct 31;56(3):191-201 - PubMed
  27. Cancer Res. 2004 Oct 1;64(19):6996-7001 - PubMed
  28. Biophys J. 2015 Jun 16;108(12):2794-806 - PubMed
  29. J Gen Physiol. 1952 May;35(5):669-701 - PubMed
  30. Biophys J. 1988 Aug;54(2):241-7 - PubMed
  31. J Phys Chem B. 2015 May 28;119(21):6379-88 - PubMed
  32. Biochem Biophys Res Commun. 1992 Apr 30;184(2):915-21 - PubMed
  33. Proc Natl Acad Sci U S A. 1952 May;38(5):451-5 - PubMed
  34. J Biol Chem. 1985 Sep 25;260(21):11643-50 - PubMed
  35. Integr Biol (Camb). 2014 Sep;6(9):817-30 - PubMed
  36. Biochemistry. 1989 Mar 21;28(6):2378-82 - PubMed
  37. J Biophys Biochem Cytol. 1955 Nov 25;1(6):511-29 - PubMed
  38. Stem Cell Rev Rep. 2009 Sep;5(3):231-46 - PubMed
  39. Annu Rev Plant Biol. 2016 Apr 29;67:287-307 - PubMed
  40. Br J Haematol. 2008 May;141(3):367-75 - PubMed
  41. Nature. 1973 Dec 21-28;246(5434):508-9 - PubMed
  42. J Membr Biol. 1989 Mar;107(3):219-28 - PubMed
  43. Biochem J. 1922;16(2):222-33 - PubMed
  44. J Hypertens. 2012 Jul;30(7):1414-22 - PubMed
  45. Med Bull (Ann Arbor). 1959 May;25(5):170-6 - PubMed
  46. Cell Physiol Biochem. 2013;31(6):875-82 - PubMed
  47. Prog Biophys Biophys Chem. 1957;8:241-307 - PubMed
  48. Rev Physiol Biochem Pharmacol. 1978;83:35-88 - PubMed
  49. Cell Cycle. 2009 Nov 1;8(21):3527-36 - PubMed
  50. J Theor Biol. 1971 Jan;30(1):151-81 - PubMed
  51. Biophys J. 1999 Apr;76(4):2272-87 - PubMed
  52. Int J Dev Biol. 2015;59(7-9):357-66 - PubMed
  53. Biophys J. 2007 Mar 1;92(5):1770-6 - PubMed

Publication Types

Grant support