Display options
Share it on

J Toxicol Pathol. 2019 Oct;32(4):213-221. doi: 10.1293/tox.2019-0054. Epub 2019 Jul 27.

MicroRNAs: potential targets and agents of endocrine disruption in female reproduction.

Journal of toxicologic pathology

Reem Sabry, Jyoji Yamate, Laura Favetta, Jonathan LaMarre

Affiliations

  1. Reproductive Health and Biotechnology Laboratory, Biomedical Sciences, Ontario Veterinary College, University of Guelph, 28 College Ave W, Guelph, ON, N1G 2W1, Canada.
  2. Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka 598-8531, Japan.

PMID: 31719748 PMCID: PMC6831493 DOI: 10.1293/tox.2019-0054

Abstract

MicroRNAs are short non-coding RNAs that have been widely recognized as key mediators in the epigenetic control of gene expression and which are present in virtually all cells and tissues studied. These regulatory molecules are generated in multiple steps in a process called microRNA biogenesis. Distinct microRNA expression patterns during the different stages of oocyte and embryo development suggest important regulatory roles for these small RNAs. Moreover, studies antagonizing specific microRNAs and enzymes in microRNA biogenesis pathways have demonstrated that interference with normal miRNA function leads to infertility and is associated with some reproductive abnormalities. Endocrine disrupting chemicals such as Bisphenol A (BPA) are synthetic hormone mimics that have been found to negatively impact reproductive health. In addition to their direct effects on gene expression, these chemicals are widely implicated in the disruption of epigenetic pathways, including the expression and activity of miRNAs, thereby altering gene expression. In this review, the roles of microRNAs during mammalian oocyte and embryo development are outlined and the different mechanisms by which endocrine disruptors such as BPA interfere with these epigenetic regulators to cause reproductive problems is explored.

©2019 The Japanese Society of Toxicologic Pathology.

Keywords: endocrine disruptor; mammal; microRNA; reproduction

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Front Public Health. 2014 Sep 15;2:139 - PubMed
  2. Reprod Domest Anim. 2012 Aug;47 Suppl 4:338-47 - PubMed
  3. Reprod Biol Endocrinol. 2014 Aug 13;12:78 - PubMed
  4. Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162 - PubMed
  5. Front Genet. 2019 May 16;10:478 - PubMed
  6. Reprod Biol Endocrinol. 2011 Jan 11;9:2 - PubMed
  7. Oncotarget. 2017 Nov 9;8(63):107167-107175 - PubMed
  8. Hum Reprod. 2002 Nov;17(11):2839-41 - PubMed
  9. Aging (Albany NY). 2017 Apr;9(4):1186-1201 - PubMed
  10. Endocrinology. 2013 May;154(5):1873-84 - PubMed
  11. Mol Cell. 2007 Jul 6;27(1):91-105 - PubMed
  12. Nucleic Acids Res. 2018 Apr 20;46(7):3259-3269 - PubMed
  13. FASEB J. 2015 Aug;29(8):3206-16 - PubMed
  14. Sci Rep. 2015 Mar 03;5:8689 - PubMed
  15. Nucleic Acids Res. 2014 Nov 10;42(20):12806-21 - PubMed
  16. Endocrinology. 2011 Oct;152(10):3941-51 - PubMed
  17. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):490-4 - PubMed
  18. RNA Biol. 2011 Jan-Feb;8(1):71-6 - PubMed
  19. J Biochem Mol Toxicol. 2019 Feb 28;:e22317 - PubMed
  20. RNA. 2005 Dec;11(12):1753-61 - PubMed
  21. PLoS One. 2012;7(3):e32754 - PubMed
  22. Cell. 1993 Dec 3;75(5):843-54 - PubMed
  23. PLoS One. 2013 Nov 04;8(11):e78505 - PubMed
  24. J Endocrinol. 2012 Dec;215(3):323-34 - PubMed
  25. RNA. 2016 Jan;22(1):129-38 - PubMed
  26. Front Neuroendocrinol. 2010 Oct;31(4):420-39 - PubMed
  27. BMC Bioinformatics. 2009 Jan 30;10 Suppl 1:S35 - PubMed
  28. Toxicol Rep. 2017 Nov 13;4:634-636 - PubMed
  29. Mol Cell. 2010 Jun 25;38(6):789-802 - PubMed
  30. Front Endocrinol (Lausanne). 2018 Aug 03;9:402 - PubMed
  31. Biol Reprod. 2016 Sep;95(3):54 - PubMed
  32. Nat Rev Drug Discov. 2013 Nov;12(11):847-65 - PubMed
  33. PLoS One. 2017 Sep 18;12(9):e0185045 - PubMed
  34. Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9667-72 - PubMed
  35. Endocr J. 2004 Dec;51(6):595-600 - PubMed
  36. Biomed Res Int. 2015;2015:698795 - PubMed
  37. Front Biosci (Landmark Ed). 2013 Jan 01;18:588-97 - PubMed
  38. Mol Cell. 2008 Nov 21;32(4):519-28 - PubMed
  39. Biol Reprod. 2016 Dec;95(6):131 - PubMed
  40. FEBS Lett. 2018 Sep;592(17):2973-2986 - PubMed
  41. Nature. 1998 Feb 19;391(6669):806-11 - PubMed
  42. Mol Hum Reprod. 2010 Jul;16(7):463-71 - PubMed
  43. J Endocrinol Invest. 2016 Mar;39(3):259-63 - PubMed
  44. Oncotarget. 2016 May 31;7(22):32554-65 - PubMed
  45. Cold Spring Harb Perspect Biol. 2014 Jan 01;6(1):null - PubMed
  46. J Transl Med. 2016 May 20;14(1):143 - PubMed
  47. Reprod Biomed Online. 2007 Sep;15(3):288-95 - PubMed
  48. Reprod Toxicol. 2010 Jul;29(4):401-6 - PubMed
  49. Hum Fertil (Camb). 2014 Jun;17(2):90-8 - PubMed
  50. Biology (Basel). 2017 Sep 14;6(3):null - PubMed
  51. Sci Rep. 2018 Oct 23;8(1):15605 - PubMed
  52. BMC Genomics. 2009 Sep 18;10:443 - PubMed
  53. Toxicol In Vitro. 2017 Jun;41:133-142 - PubMed
  54. Fertil Steril. 2014 Jun;101(6):1524-30 - PubMed
  55. Chemosphere. 2004 May;55(6):861-7 - PubMed
  56. Biol Reprod. 2017 Jun 1;96(6):1167-1180 - PubMed
  57. Genes Dev. 2003 Dec 15;17(24):3011-6 - PubMed
  58. Vet Pathol. 2014 Jul;51(4):759-74 - PubMed
  59. Nat Genet. 2003 Nov;35(3):215-7 - PubMed
  60. Development. 2016 Feb 15;143(4):635-47 - PubMed
  61. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011 Jun;28(6):791-8 - PubMed
  62. Front Genet. 2015 Jan 26;6:2 - PubMed
  63. Biol Reprod. 1994 Feb;50(2):225-32 - PubMed
  64. Int J Mol Sci. 2016 Mar 18;17(3):396 - PubMed
  65. Biochem J. 2017 May 4;474(10):1603-1618 - PubMed
  66. Genes Dev. 2009 Nov 15;23(22):2639-49 - PubMed
  67. Genomics. 2011 Jan;97(1):1-6 - PubMed
  68. Trends Endocrinol Metab. 2009 Aug;20(6):265-72 - PubMed
  69. Curr Genomics. 2009 May;10(3):169-83 - PubMed
  70. Genes Dev. 2008 Oct 15;22(20):2773-85 - PubMed
  71. Methods Mol Biol. 2012;825:3-16 - PubMed
  72. J Anim Sci. 2004;82 E-Suppl:E14-23 - PubMed
  73. J Transl Med. 2015 Jul 22;13:238 - PubMed

Publication Types