Display options
Share it on

Chemistry. 2020 Feb 03;26(7):1558-1566. doi: 10.1002/chem.201904024. Epub 2020 Jan 07.

Porous Molecular Capsules as Non-Polymeric Transducers of Mechanical Forces to Mechanophores.

Chemistry (Weinheim an der Bergstrasse, Germany)

Hanna Jędrzejewska, Ewelina Wielgus, Sławomir Kaźmierski, Halina Rogala, Michał Wierzbicki, Aneta Wróblewska, Tomasz Pawlak, Marek J Potrzebowski, Agnieszka Szumna

Affiliations

  1. Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland.
  2. Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, ?ód?, Poland.

PMID: 31691377 DOI: 10.1002/chem.201904024

Abstract

Mechanical grinding/milling can be regarded as historically the first technology for changing the properties of matter. Mechanically activated molecular units (mechanophores) can be present in various structures: polymers, macromolecules, or small molecules. However, only polymers have been reported to effectively transduce energy to mechanophores, which induces breakage of covalent bonds. In this paper, a second possibility is presented-molecular capsules as stress-sensitive units. Mechanochemical encapsulation of fullerenes in cystine-based covalent capsules indicates that complexation takes place in the solid state, despite the fact that the capsules do not possess large enough entrance portals. By using a set of solvent-free MALDI (sf-MALDI) and solid-state NMR (ss-NMR) experiments, it has been proven that encapsulation proceeds during milling and in this process hydrazones and disulfides get activated for breakage, exchange, and re-forming. The capsules are porous and therefore prone to collapse under solvent-free conditions and their conformational rigidity promotes the collapse by the breaking of covalent bonds.

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: mechanochemistry; solid-phase synthesis; solid-state NMR spectroscopy; solvent-free MALDI; supramolecular chemistry

References

  1. L. Takacs, Chem. Soc. Rev. 2013, 42, 7649-7659. - PubMed
  2. M. K. Beyer, H. Clausen-Schaumann, Chem. Rev. 2005, 105, 2921-2948. - PubMed
  3. G. Kaupp, CrystEngComm 2009, 11, 388-403. - PubMed
  4. S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41, 413-447. - PubMed
  5. Z. V. Todres, Organic Mechanochemistry and its Practical Applications, Taylor and Francis, Boca Raton, 2006. - PubMed
  6. D. Margetić, V. Štrukil, Mechanochemical Organic Synthesis, Elsevier, Amsterdam, 2016. - PubMed
  7. B. Rodríguez, A. Bruckmann, T. Rantanen, C. Bolm, Adv. Synth. Catal. 2007, 349, 2213-2233. - PubMed
  8. A. Stolle, T. Szuppa, S. E. S. Leonhardt, B. Ondruschka, Chem. Soc. Rev. 2011, 40, 2317-2329. - PubMed
  9. J. Andersen, J. Mack, Green Chem. 2018, 20, 1435-1443. - PubMed
  10. T. Friščić, C. Mottillo, H. M. Titi, Angew. Chem. Int. Ed. 2020, 59, 1018-1029; - PubMed
  11. Angew. Chem. 2020, 132, 1030-1041. - PubMed
  12. A. Moores, Curr. Opin. Green Sustain. Chem. 2018, 12, 33-37. - PubMed
  13. J. G. Hernández, K. J. Ardila-Fierro, D. Crawford, S. L. James, C. Bolm, Green Chem. 2017, 19, 2620-2625. - PubMed
  14. T. Friščić, Chem. Soc. Rev. 2012, 41, 3493-3510. - PubMed
  15. A. Bose, P. Mal, Beilstein J. Org. Chem. 2019, 15, 881-900. - PubMed
  16. D. Hasa, W. Jones, Adv. Drug Delivery Rev. 2017, 117, 147-161. - PubMed
  17. N. Willis-Fox, E. Rognin, T. A. Aljohani, R. Daly, Chem. 2018, 4, 2499-2537. - PubMed
  18. J. Li, C. Nagamani, J. S. Moore, Acc. Chem. Res. 2015, 48, 2181-2190. - PubMed
  19. T. K. Achar, A. Bose, P. Mal, Beilstein J. Org. Chem. 2017, 13, 1907-1931. - PubMed
  20. J. L. Howard, Q. Cao, D. L. Browne, Chem. Sci. 2018, 9, 3080-3094. - PubMed
  21. J. L. Howard, M. C. Brand, D. L. Browne, Angew. Chem. Int. Ed. 2018, 57, 16104-16108; - PubMed
  22. Angew. Chem. 2018, 130, 16336-16340. - PubMed
  23. L. Chen, M. Regan, J. Mack, ACS Catal. 2016, 6, 868-872. - PubMed
  24. C. R. Hickenboth, J. S. Moore, S. R. White, N. R. Sottos, J. Baudry, S. R. Wilson, Nature 2007, 446, 423-427. - PubMed
  25. D. Tan, C. Mottillo, A. D. Katsenis, V. Štrukil, T. Friščić, Angew. Chem. Int. Ed. 2014, 53, 9321-9324; - PubMed
  26. Angew. Chem. 2014, 126, 9475-9478. - PubMed
  27. Y. X. Shi, K. Xu, J. K. Clegg, R. Ganguly, H. Hirao, T. Friščić, F. García, Angew. Chem. Int. Ed. 2016, 55, 12736-12740; - PubMed
  28. Angew. Chem. 2016, 128, 12928-12932. - PubMed
  29. A. M. Belenguer, G. I. Lampronti, A. J. Cruz-Cabeza, C. A. Hunter, J. K. M. Sanders, Chem. Sci. 2016, 7, 6617-6627. - PubMed
  30. C. Vasiliu-Oprea, F. Dan, Macromolecular Mechanochemistry, Cambridge International Science Publishing, Cambridge, 2003. - PubMed
  31. A. L. Black, J. M. Lenhardt, S. L. Craig, J. Mater. Chem. 2011, 21, 1655-1663. - PubMed
  32. M. Di Giannantonio, M. A. Ayer, E. Verde-Sesto, M. Lattuada, C. Weder, K. M. Fromm, Angew. Chem. Int. Ed. 2018, 57, 11445-11450; - PubMed
  33. Angew. Chem. 2018, 130, 11616-11621. - PubMed
  34. D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martínez, S. R. White, J. S. Moore, N. R. Sottos, Nature 2009, 459, 68-72. - PubMed
  35. H. T. Baytekin, B. Baytekin, B. A. Grzybowski, Angew. Chem. Int. Ed. 2012, 51, 3596-3600; - PubMed
  36. Angew. Chem. 2012, 124, 3656-3660. - PubMed
  37. M. B. Larsen, A. J. Boydston, J. Am. Chem. Soc. 2013, 135, 8189-8192. - PubMed
  38. C. K. Lee, D. A. Davis, S. R. White, J. S. Moore, N. R. Sottos, P. V. J. Braun, J. Am. Chem. Soc. 2010, 132, 16107-16111. - PubMed
  39. Y. Lin, Y. Zhang, Z. Wang, S. L. Craig, J. Am. Chem. Soc. 2019, 141, 10943-10947. - PubMed
  40. A. Piermattei, S. Karthikeyan, R. P. Sijbesma, Nat. Chem. 2009, 1, 133-137. - PubMed
  41. M. J. Kryger, M. T. Ong, S. A. Odom, N. R. Sottos, S. R. White, T. J. Martínez, J. S. Moore, J. Am. Chem. Soc. 2010, 132, 4558-4559. - PubMed
  42. H. M. Klukovich, Z. S. Kean, S. T. Iacono, S. L. Craig, J. Am. Chem. Soc. 2011, 133, 17882-17888. - PubMed
  43. Y. Chen, A. J. H. Spiering, S. Karthikeyan, G. W. M. Peters, E. W. Meijer, R. P. Sijbesma, Nat. Chem. 2012, 4, 559-562. - PubMed
  44. K. L. Berkowski, S. L. Potisek, C. R. Hickenboth, J. S. Moore, Macromolecules 2005, 38, 8975-8978. - PubMed
  45. M. Szymański, M. Wierzbicki, M. Gilski, H. Jędrzejewska, M. Sztylko, P. Cmoch, A. Shkurenko, M. Jaskólski, A. Szumna, Chem. Eur. J. 2016, 22, 3148-3155. - PubMed
  46. M. P. Szymański, H. Jędrzejewska, M. Wierzbicki, A. Szumna, Phys. Chem. Chem. Phys. 2017, 19, 15676-15680. - PubMed
  47. S. N. Journey, K. L. Teppang, C. A. Garcia, S. A. Brim, D. Onofrei, J. B. Addison, G. P. Holland, B. W. Purse, Chem. Sci. 2017, 8, 7737-7745. - PubMed
  48. K. Khoo, R. S. Norton in Amino Acids, Peptides and Proteins in Organic Chemistry, Vol. 5 (Ed.: A. B. Hughes), Wiley-VCH, Weinheim, 2011, pp. 395-417. - PubMed
  49. K. Chakraborty, S. Thakurela, R. S. Prajapati, S. Indu, P. S. S. Ali, C. Ramakrishnan, R. Varadarajan, Biochemistry 2005, 44, 14638-14646. - PubMed
  50. M. F. Iozzi, T. Helgaker, E. Uggerud, J. Phys. Chem. A 2011, 115, 2308-2315. - PubMed
  51. Y. Li, A. Nese, K. Matyjaszewski, S. S. Sheiko, Macromolecules 2013, 46, 7196-7201. - PubMed
  52. U. F. Fritze, S. L. Craig, M. von Delius, J. Polym. Sci. Part A 2018, 56, 1404-1411. - PubMed
  53. R. Tycko, R. C. Haddon, G. Dabbagh, S. H. Glarum, D. C. Douglass, A. M. Mujsce, J. Phys. Chem. 1991, 95, 518-520. - PubMed
  54. J. W. Wiench, C. E. Bronnimann, V. S.-Y. Lin, M. Pruski, J. Am. Chem. Soc. 2007, 129, 12076-12077. - PubMed
  55. K. Mao, M. Pruski, J. Magn. Reson. 2009, 201, 165-174. - PubMed
  56. R. K. Harris, Analyst 1985, 110, 649-655. - PubMed
  57. M. Deschamps, S. Cadars, E. Gilbert, P. Azaïs, E. Raymundo-Pinero, F. Béguin, D. Massiot, Solid State Nucl. Magn. Reson. 2012, 42, 81-84. - PubMed
  58. B.-J. van Rossum, C. P. de Groot, V. Ladizhansky, S. Vega, H. J. M. de Groot, J. Am. Chem. Soc. 2000, 122, 3465-3472. - PubMed
  59. A. M. Belenguer, T. Friščić, G. M. Day, J. K. M. Sanders, Chem. Sci. 2011, 2, 696-700. - PubMed
  60. A. M. Belenguer, A. A. L. Michalchuk, G. I. Lampronti, J. K. M. Sanders, Beilstein J. Org. Chem. 2019, 15, 1226-1235. - PubMed
  61. A. P. Wiita, S. R. K. Ainavarapu, H. H. Huang, J. M. Fernandez, Proc. Natl. Acad. Sci. USA 2006, 103, 7222-7227. - PubMed
  62. S. R. Koti Ainavarapu, A. P. Wiita, L. Dougan, E. Uggerud, J. M. Fernandez, J. Am. Chem. Soc. 2008, 130, 6479-6487. - PubMed
  63. A. E. M. Beedle, M. Mora, C. T. Davis, A. P. Snijders, G. Stirnemann, S. Garcia-Manyes, Nat. Commun. 2018, 9, 3155. - PubMed
  64. I. Park, S. S. Sheiko, A. Nese, K. Matyjaszewski, Macromolecules 2009, 42, 1805-1807. - PubMed
  65. A. D. Katsenis, A. Puškarić, V. Štrukil, C. Mottillo, P. A. Julien, K. Užarević, M.-H. Pham, T.-O. Do, S. A. J. Kimber, P. Lazić, O. Magdysyuk, R. E. Dinnebier, I. Halasz, T. Friščić, Nat. Commun. 2015, 6, 6662. - PubMed
  66. M. Grajda, M. Wierzbicki, P. Cmoch, A. Szumna, J. Org. Chem. 2013, 49, 11597-11601. - PubMed
  67. G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122. - PubMed
  68. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341. - PubMed

Publication Types

Grant support