Display options
Share it on

Nat Nanotechnol. 2020 Jan;15(1):59-66. doi: 10.1038/s41565-019-0582-z. Epub 2019 Dec 09.

Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond.

Nature nanotechnology

Pavel V Bakharev, Ming Huang, Manav Saxena, Suk Woo Lee, Se Hun Joo, Sung O Park, Jichen Dong, Dulce C Camacho-Mojica, Sunghwan Jin, Youngwoo Kwon, Mandakini Biswal, Feng Ding, Sang Kyu Kwak, Zonghoon Lee, Rodney S Ruoff

Affiliations

  1. Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, Republic of Korea. [email protected].
  2. Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, Republic of Korea.
  3. School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
  4. Centre for Nano Material Sciences, Jain University, Karnataka, India.
  5. School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
  6. Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, Republic of Korea. [email protected].
  7. School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea. [email protected].
  8. School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea. [email protected].
  9. Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea. [email protected].

PMID: 31819243 DOI: 10.1038/s41565-019-0582-z

Abstract

Notwithstanding the numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film carried out to date, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluorination of graphene sheets in Bernal (AB)-stacked bilayer graphene grown by chemical vapour deposition on a single-crystal CuNi(111) surface triggers the formation of interlayer carbon-carbon bonds, resulting in a fluorinated diamond monolayer ('F-diamane'). Induced by fluorine chemisorption, the phase transition from (AB)-stacked bilayer graphene to single-layer diamond was studied and verified by X-ray photoelectron, UV photoelectron, Raman, UV-Vis and electron energy loss spectroscopies, transmission electron microscopy and density functional theory calculations.

References

  1. Chernozatonskii, L. A., Sorokin, P. B., Kvashnin, A. G. & Kvashnin, D. G. Diamond-like C - PubMed
  2. Ribas, M. A., Singh, A. K., Sorokin, P. B. & Yakobson, B. I. Patterning nanoroads and quantum dots on fluorinated graphene. Nano. Res 4, 143–152 (2011). - PubMed
  3. Barboza, A. P. et al. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 23, 3014–3017 (2011). - PubMed
  4. Odkhuu, D., Shin, D., Ruoff, R. S. & Park, N. Conversion of multilayer graphene into continuous ultrathin sp - PubMed
  5. Kvashnin, A. G., Chernozatonskii, L. A., Yakobson, B. I. & Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 14, 676–681 (2014). - PubMed
  6. Martins, L. G. P. et al. Raman evidence for pressure-induced formation of diamondene. Nat. Commun. 8, 96 (2017). - PubMed
  7. Gao, Y. et al. Ultrahard carbon film from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2018). - PubMed
  8. Rajasekaran, S., Abild-Pedersen, F., Ogasawara, H., Nilsson, A. & Kaya, S. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys. Rev. Lett. 111, 085503 (2013). - PubMed
  9. Rajasekaran, S. et al. Reversible graphene-metal contact through hydrogenation. Phys. Rev. B 86, 075417 (2012). - PubMed
  10. Pumera, M. & Wong, C. Graphane and hydrogenated graphene. Chem. Soc. Rev. 42, 5987–5995 (2013). - PubMed
  11. Piazza, F. et al. Low temperature, pressureless sp - PubMed
  12. Smith, D. et al. Hydrogenation of graphene by reaction at high pressure and high temperature. ACS Nano 9, 8279–8283 (2015). - PubMed
  13. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence of graphane. Science 323, 610–613 (2009). - PubMed
  14. Burgess, J. S. et al. Tuning the electronic properties of graphene by hydrogenation in a plasma enhanced chemical vapor deposition reactor. Carbon 49, 4420–4426 (2011). - PubMed
  15. Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of teflon. Small 6, 2877–2884 (2010). - PubMed
  16. Robinson, J. T. et al. Properties of fluorinated graphene films. Nano Lett. 10, 3001–3005 (2010). - PubMed
  17. Jeon, K.-J. et al. Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 5, 1042–1046 (2011). - PubMed
  18. Fleisch, T. H. & Mains, G. J. Reduction of copper oxides by UV radiation and atomic hydrogen studied by XPS. Appl. Surf. Sci. 10, 51–62 (1982). - PubMed
  19. Grosvenor, A. P., Biesinger, M. C., Smart, R. St. C. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci 600, 1771–1779 (2006). - PubMed
  20. Hoffman, S. in Practical Surface Analysis, Vol. 2 (eds Briggs, D. & Seah, M. P.) Ch. 4 (Wiley, 1990). - PubMed
  21. Watanabe, N. Characteristics and applications of graphite fluoride. Physica B & C 105, 17–21 (1981). - PubMed
  22. Asanov, I. P., Paasonen, V. M., Mazalov, L. N. & Nazarov, A. S. X-ray photoelectron study of fluorinated graphite intercalation compounds. J. Struct. Chem 39, 1127–1133 (1998). - PubMed
  23. An, K. H. et al. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett. 80, 4235–4237 (2002). - PubMed
  24. Sato, Y., Itoh, K., Hagiwara, R., Fukunaga, T. & Ito, Y. On the so-called “semi-ionic” C-F bond character in fluorine-GIC. Carbon 42, 3243–3249 (2004). - PubMed
  25. Okotrub, A. V., Yudanov, N. F., Asanov, I. P., Vyalikh, D. V. & Bulusheva, L. G. Anisotropy of chemical bonding in semifluorinated graphite C - PubMed
  26. Grayfer, E. D. et al. Synthesis, properties, and dispersion of few-layer graphene fluoride. Chem.-Asian J. 8, 2015–2022 (2013). - PubMed
  27. Claves, D. Spectroscopic study of fluorinated carbon nanostructures. New J. Chem. 35, 2477–2482 (2011). - PubMed
  28. Yun, S.-M. et al. An XPS study of oxyfluorinated multiwalled carbon nano tubes. Carbon Lett 8, 292–298 (2007). - PubMed
  29. Wu, Y. et al. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on CuNi alloy foils. ACS Nano 6, 77311–77738 (2012). - PubMed
  30. Liu, L. et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6, 8241–8249 (2012). - PubMed
  31. Luo, Z. et al. Large-scale synthesis of Bi-layer graphene in strongly coupled stacking order. Adv. Funct. Mater. 21, 911–917 (2011). - PubMed
  32. Bianconi, A., Hagström, S. B. M. & Bachrach, R. Z. Photoemission studies of graphite high-energy conduction-band and valence-band states using soft X-ray synchrotron radiation excitation. Phys. Rev. B 16, 5543–5548 (1977). - PubMed
  33. Ono, M. et al. UPS study of VUV-photodegradation of polytetrafluoroethylene (PTFE) ultrathin film by using synchrotron radiation. Nucl. Instrum. Meth. B 236, 377–382 (2005). - PubMed
  34. Pate, B. B. The diamond surface: atomic and electronic structure. Surf. Sci 165, 83–142 (1986). - PubMed
  35. Rietwyk, K. J. et al. Work function and electron affinity of the fluorine-terminated (100) diamond surface. Appl. Phys. Lett. 102, 091604 (2013). - PubMed
  36. Kravets, V. G. et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010). - PubMed
  37. Warner, J. H. et al. Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol 4, 500–504 (2009). - PubMed
  38. Withers, F., Bointon, T. H., Dubois, M., Russo, S. & Craciun, M. F. Nanopatterning of fluorinated graphene by electron beam irradiation. Nano Lett. 11, 3912–3916 (2011). - PubMed
  39. Martins, S. E., Withers, F., Dubois, M., Craciun, M. F. & Russo, S. Tuning the transport gap of functionalized graphene via electron beam irradiation. New J. Phys. 15, 033024 (2013). - PubMed
  40. Hayashi, T. et al. NanoTeflons: structure and EELS characterization of fluorinated carbon nanotubes and nanofibers. Nano Lett. 2, 491–496 (2002). - PubMed

Publication Types

Grant support