Display options
Share it on

Nat Chem. 2020 Feb;12(2):137-144. doi: 10.1038/s41557-019-0385-8. Epub 2019 Dec 02.

Achieving spin-triplet exciton transfer between silicon and molecular acceptors for photon upconversion.

Nature chemistry

Pan Xia, Emily K Raulerson, Devin Coleman, Carter S Gerke, Lorenzo Mangolini, Ming Lee Tang, Sean T Roberts

Affiliations

  1. Materials Science and Engineering Program, University of California Riverside, Riverside, CA, USA.
  2. Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
  3. Department of Chemistry, University of California Riverside, Riverside, CA, USA.
  4. Materials Science and Engineering Program, University of California Riverside, Riverside, CA, USA. [email protected].
  5. Department of Mechanical Engineering, University of California Riverside, Riverside, CA, USA. [email protected].
  6. Materials Science and Engineering Program, University of California Riverside, Riverside, CA, USA. [email protected].
  7. Department of Chemistry, University of California Riverside, Riverside, CA, USA. [email protected].
  8. Department of Chemistry, The University of Texas at Austin, Austin, TX, USA. [email protected].

PMID: 31792389 DOI: 10.1038/s41557-019-0385-8

Abstract

Inorganic semiconductor nanocrystals interfaced with spin-triplet exciton-accepting organic molecules have emerged as promising materials for converting incoherent long-wavelength light into the visible range. However, these materials to date have made exclusive use of nanocrystals containing toxic elements, precluding their use in biological or environmentally sensitive applications. Here, we address this challenge by chemically functionalizing non-toxic silicon nanocrystals with triplet-accepting anthracene ligands. Photoexciting these structures drives spin-triplet exciton transfer from silicon to anthracene through a single 15 ns Dexter energy transfer step with a nearly 50% yield. When paired with 9,10-diphenylanthracene emitters, these particles readily upconvert 488-640 nm photons to 425 nm violet light with efficiencies as high as 7 ± 0.9% and can be readily incorporated into aqueous micelles for biological use. Our demonstration of spin-triplet exciton transfer from silicon to molecular triplet acceptors can critically enable new technologies for solar energy conversion, quantum information and near-infrared driven photocatalysis.

References

  1. Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019). - PubMed
  2. Tayebjee, M. J. Y., McCamey, D. R. & Schmidt, T. W. Beyond Shockley–Queisser: molecular approaches to high-efficiency photovoltaics. J. Phys. Chem. Lett. 6, 2367–2378 (2015). - PubMed
  3. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359, 679–684 (2018). - PubMed
  4. Lin, X. et al. Core–shell–shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition. Nano Lett. 18, 948–956 (2018). - PubMed
  5. Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2015). - PubMed
  6. Huang, Z. et al. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015). - PubMed
  7. Mongin, C., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M. & Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016). - PubMed
  8. Li, X., Fast, A., Huang, Z., Fishman, D. A. & Tang, M. L. Complementary lock-and-key ligand binding of a triplet transmitter to a nanocrystal photosensitizer. Angew. Chem. Int. Ed. 56, 5598–5602 (2017). - PubMed
  9. Li, X., Huang, Z., Zavala, R. & Tang, M. L. Distance-dependent triplet energy transfer between CdSe nanocrystals and surface bound anthracene. J. Phys. Chem. Lett. 7, 1955–1959 (2016). - PubMed
  10. Garakyaraghi, S. & Castellano, F. N. Nanocrystals for triplet sensitization: molecular behavior from quantum-confined materials. Inorg. Chem. 57, 2351–2359 (2018). - PubMed
  11. Mangolini, L., Thimsen, E. & Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005). - PubMed
  12. Limpens, R., Pach, G. F. & Neale, N. R. Nonthermal plasma-synthesized phosphorus–boron co-doped Si nanocrystals: a new approach to nontoxic NIR-emitters. Chem. Mater. 31, 4426–4435 (2019). - PubMed
  13. Hessel, C. M. et al. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 393–401 (2012). - PubMed
  14. Wilson, M. W. B. et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011). - PubMed
  15. Burdett, J. J., Müller, A. M., Gosztola, D. & Bardeen, C. J. Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133, 144506 (2010). - PubMed
  16. Sanders, S. N. et al. Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137, 8965–8972 (2015). - PubMed
  17. Zirzlmeier, J. et al. Singlet fission in pentacene dimers. Proc. Natl Acad. Sci. USA 112, 5325–5330 (2015). - PubMed
  18. Eaton, S. W. et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 135, 14701–14712 (2013). - PubMed
  19. Le, A. K. et al. Singlet fission involves an interplay between energetic driving force and electronic coupling in perylenediimide films. J. Am. Chem. Soc. 140, 814–826 (2018). - PubMed
  20. Johnson, J. C., Nozik, A. J. & Michl, J. High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 132, 16302–16303 (2010). - PubMed
  21. Wang, C. & Tauber, M. J. High-yield singlet fission in a zeaxanthin aggregate observed by picosecond resonance Raman spectroscopy. J. Am. Chem. Soc. 132, 13988–13991 (2010). - PubMed
  22. Lukman, S. et al. Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids. J. Am. Chem. Soc. 139, 18376–18385 (2017). - PubMed
  23. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006). - PubMed
  24. Futscher, M. H., Rao, A. & Ehrler, B. The potential of singlet fission photon multipliers as an alternative to silicon-based tandem solar cells. ACS Energy Lett. 3, 2587–2592 (2018). - PubMed
  25. Weiss, L. R. et al. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2017). - PubMed
  26. Einzinger, M. et al. Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90–94 (2019). - PubMed
  27. Han, Y. et al. Visible-light-driven sensitization of naphthalene triplets using quantum-confined CsPbBr - PubMed
  28. Huang, Z. et al. Enhanced near-infrared-to-visible upconversion by synthetic control of PbS nanocrystal triplet photosensitizers. J. Am. Chem. Soc. 141, 9769–9772 (2019). - PubMed
  29. Mahboub, M., Huang, Z. & Tang, M. L. Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16, 7169–7175 (2016). - PubMed
  30. Huang, Z. & Tang, M. L. Designing transmitter ligands that mediate energy transfer between semiconductor nanocrystals and molecules. J. Am. Chem. Soc. 139, 9412–9418 (2017). - PubMed
  31. Okumura, K., Mase, K., Yanai, N. & Kimizuka, N. Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem. Eur. J. 22, 7721–7726 (2016). - PubMed
  32. Yanai, N. & Kimizuka, N. New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 50, 2487–2495 (2017). - PubMed
  33. Wheeler, L. M. et al. Silyl radical abstraction in the functionalization of plasma-synthesized silicon nanocrystals. Chem. Mater. 27, 6869–6878 (2015). - PubMed
  34. Kroupa, D. M. et al. Control of energy flow dynamics between tetracene ligands and PbS quantum dots by size tuning and ligand coverage. Nano Lett. 18, 865–873 (2018). - PubMed
  35. Bender, J. A. et al. Surface states mediate triplet energy transfer in nanocrystal–acene composite systems. J. Am. Chem. Soc. 140, 7543–7553 (2018). - PubMed
  36. Davis, N. J. L. K. et al. Singlet fission and triplet transfer to PbS quantum dots in TIPS-tetracene carboxylic acid ligands. J. Phys. Chem. Lett. 9, 1454–1460 (2018). - PubMed
  37. Carroll, G. M., Limpens, R. & Neale, N. R. Tuning confinement in colloidal silicon nanocrystals with saturated surface ligands. Nano Lett. 18, 3118–3124 (2018). - PubMed
  38. Montalti, M., Credi, A., Prodi, L. & Gandolfi, M. T. Handbook of Photochemistry (CRC Press, Taylor and Francis, 2006). - PubMed
  39. Evans, D. F. Perturbation of singlet–triplet transitions of aromatic molecules by oxygen under pressure. J. Chem. Soc. 1351–1357 (1957). - PubMed
  40. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953). - PubMed
  41. Yu, Y. et al. Size-dependent photoluminescence efficiency of silicon nanocrystal quantum dots. J. Phys. Chem. C 121, 23240–23248 (2017). - PubMed
  42. Stolle, C. J., Lu, X., Yu, Y., Schaller, R. D. & Korgel, B. A. Efficient carrier multiplication in colloidal silicon nanorods. Nano Lett. 17, 5580–5586 (2017). - PubMed
  43. Garakyaraghi, S., Mongin, C., Granger, D. B., Anthony, J. E. & Castellano, F. N. Delayed molecular triplet generation from energized lead sulfide quantum dots. J. Phys. Chem. Lett. 8, 1458–1463 (2017). - PubMed
  44. Sanders, S. N., Gangishetty, M. K., Sfeir, M. Y. & Congreve, D. N. Photon upconversion in aqueous nanodroplets. J. Am. Chem. Soc. 141, 9180–9184 (2019). - PubMed
  45. Kouno, H., Sasaki, Y., Yanai, N. & Kimizuka, N. Supramolecular crowding can avoid oxygen quenching of photon upconversion in water. Chem. Eur. J. 25, 6124–6130 (2019). - PubMed
  46. Kim, J.-H. & Kim, J.-H. Encapsulated triplet–triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. J. Am. Chem. Soc. 134, 17478–17481 (2012). - PubMed
  47. Marsico, F. et al. Hyperbranched unsaturated polyphosphates as a protective matrix for long-term photon upconversion in air. J. Am. Chem. Soc. 136, 11057–11064 (2014). - PubMed
  48. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001). - PubMed
  49. Dexter, D. L. Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells. J. Lumin. 18, 779–784 (1979). - PubMed
  50. MacQueen, R. W. et al. Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices. Mater. Horiz. 5, 1065–1075 (2018). - PubMed

Publication Types