Display options
Share it on

Front Plant Sci. 2019 Nov 28;10:1497. doi: 10.3389/fpls.2019.01497. eCollection 2019.

Differences in the Structural Chemical Composition of the Primary Xylem of Cactaceae: A Topochemical Perspective.

Frontiers in plant science

Agustín Maceda, Marcos Soto-Hernández, Cecilia B Peña-Valdivia, Carlos Trejo, Teresa Terrazas

Affiliations

  1. Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico.
  2. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico.

PMID: 31850014 PMCID: PMC6892835 DOI: 10.3389/fpls.2019.01497

Abstract

The xylem of Cactaceae is a complex system with different types of cells whose main function is to conduct and store water, mostly during the development of primary xylem, which has vessel elements and wide-band tracheids. The anatomy of primary xylem of Cactaceae has been widely studied, but little is known about its chemical composition. The aim of this study was to determine the structural chemical composition of the primary xylem of Cactaceae and to compare it with the anatomy in the group. Seeds from eight cacti species were used, representing the Pereskioideae, Opuntioideae, and Cactoideae subfamilies. Seeds were germinated and grown for 8 months. Subsequently, only the stem of the seedling was selected, dried, milled, and processed following the TAPPI T-222 om-02 norm; lignin was quantified using the Klason method and cellulose with the Kurshner-Höffer method. Using Fourier transform infrared spectroscopy, the percentage of syringyl and guaiacyl in lignin was calculated. Seedlings of each species were fixed, sectioned, and stained for their anatomical description and fluorescence microscopy analysis for the topochemistry of the primary xylem. The results showed that there were significant differences between species (

Copyright © 2019 Maceda, Soto-Hernández, Peña-Valdivia, Trejo and Terrazas.

Keywords: Fourier transform infrared; guaiacyl; lignin; primary xylem; topochemistry; vessel elements

References

  1. Plants (Basel). 2018 Feb 02;7(1):null - PubMed
  2. Biotechnol Biofuels. 2015 Aug 27;8:126 - PubMed
  3. Phytochemistry. 2001 Jul;57(6):859-73 - PubMed
  4. Biotechniques. 2003 Jun;34(6):1174-8, 1180, 1182 - PubMed
  5. Annu Rev Plant Biol. 2010;61:263-89 - PubMed
  6. J Microsc. 2007 Sep;227(Pt 3):203-15 - PubMed
  7. Biotechnol Biofuels. 2017 Nov 30;10:263 - PubMed
  8. Plant Cell. 2001 Jul;13(7):1567-86 - PubMed
  9. Ann Bot. 2014 May;113(6):977-89 - PubMed
  10. Plant Physiol. 2012 Feb;158(2):642-53 - PubMed
  11. J Food Sci. 2008 Sep;73(7):C526-32 - PubMed
  12. Anal Chem. 2011 Sep 15;83(18):7020-6 - PubMed
  13. Int J Mol Sci. 2008 Jan;9(1):78-88 - PubMed
  14. Front Plant Sci. 2016 Oct 27;7:1612 - PubMed
  15. J Anim Sci. 1986 Jun;62(6):1703-12 - PubMed
  16. Ann Bot. 2005 Jun;95(7):1179-86 - PubMed
  17. Am J Bot. 2010 Dec;97(12):1951-60 - PubMed
  18. An Acad Bras Cienc. 2015 Apr-Jun;87(2):765-76 - PubMed
  19. New Phytol. 2010 Jul;187(2):273-85 - PubMed
  20. Front Plant Sci. 2016 Jun 28;7:949 - PubMed
  21. Curr Opin Biotechnol. 2019 Apr;56:105-111 - PubMed
  22. Front Plant Sci. 2012 Aug 22;3:204 - PubMed
  23. Genes Dev. 2005 Aug 15;19(16):1855-60 - PubMed
  24. Plant J. 2012 Feb;69(3):542-52 - PubMed
  25. Trends Plant Sci. 2010 May;15(5):241-6 - PubMed
  26. Plant Cell Environ. 2010 Oct;33(10):1721-30 - PubMed
  27. J Photochem Photobiol B. 2006 Apr 3;83(1):1-10 - PubMed
  28. Ann Bot. 2003 May;91(6):673-95 - PubMed
  29. Annu Rev Plant Biol. 2011;62:567-90 - PubMed
  30. Plant Physiol. 2010 Oct;154(2):555-61 - PubMed
  31. J Plant Res. 2006 Sep;119(5):497-504 - PubMed
  32. Am J Bot. 1999 Mar;86(3):367-71 - PubMed
  33. Microsc Res Tech. 2004 Apr 1;63(5):282-8 - PubMed
  34. Phytochemistry. 2007 Feb;68(4):513-20 - PubMed
  35. New Phytol. 2007;174(4):787-98 - PubMed
  36. Curr Biol. 2009 Jan 27;19(2):169-75 - PubMed
  37. J Plant Res. 2004 Feb;117(1):69-76 - PubMed
  38. Methods Mol Biol. 2017;1544:233-247 - PubMed
  39. PLoS One. 2015 Apr 16;10(4):e0123919 - PubMed
  40. Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17555-8 - PubMed
  41. New Phytol. 2015 Aug;207(3):519-35 - PubMed
  42. Sci Rep. 2017 Mar 10;7:44386 - PubMed
  43. An Acad Bras Cienc. 2011 Sep;83(3):1059-68 - PubMed
  44. Appl Environ Microbiol. 2013 Apr;79(8):2560-71 - PubMed
  45. Sci Rep. 2015 Nov 25;5:17210 - PubMed
  46. Front Plant Sci. 2013 Apr 24;4:108 - PubMed
  47. Ann Bot. 2006 Nov;98(5):901-26 - PubMed
  48. Biotech Histochem. 2008 Jun;83(3-4):161-71 - PubMed
  49. Plant Cell. 2010 Apr;22(4):1033-45 - PubMed
  50. Microsc Microanal. 2018 Aug;24(4):442-452 - PubMed
  51. Ann Bot. 2015 Jun;115(7):1053-74 - PubMed
  52. J Therm Biol. 2016 Apr;57:6-10 - PubMed
  53. Biotech Histochem. 2007 Aug;82(4-5):209-16 - PubMed
  54. J Struct Biol. 2010 Jan;169(1):106-15 - PubMed
  55. J Integr Plant Biol. 2013 Apr;55(4):294-388 - PubMed
  56. Front Plant Sci. 2018 Oct 17;9:1518 - PubMed
  57. Chem Biodivers. 2018 Apr;15(4):e1700574 - PubMed
  58. J Exp Bot. 2007;58(13):3485-501 - PubMed
  59. Plant Methods. 2011 Apr 10;7:9 - PubMed
  60. Fitoterapia. 2001 Mar;72(3):288-90 - PubMed
  61. Plant Physiol. 2018 Aug;177(4):1629-1638 - PubMed

Publication Types