Display options
Share it on

mSystems. 2019 Dec 03;4(6). doi: 10.1128/mSystems.00320-19.

Uncovering the Diversity and Activity of Methylotrophic Methanogens in Freshwater Wetland Soils.

mSystems

Adrienne B Narrowe, Mikayla A Borton, David W Hoyt, Garrett J Smith, Rebecca A Daly, Jordan C Angle, Elizabeth K Eder, Allison R Wong, Richard A Wolfe, Alexandra Pappas, Gil Bohrer, Christopher S Miller, Kelly C Wrighton

Affiliations

  1. Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA.
  2. Pacific Northwest National Laboratory, Richland, Washington, USA.
  3. Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.
  4. Department of Civil, Environmental & Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA.
  5. Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA.
  6. Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA [email protected].

PMID: 31796563 PMCID: PMC6890927 DOI: 10.1128/mSystems.00320-19

Abstract

Wetland soils are one of the largest natural contributors to the emission of methane, a potent greenhouse gas. Currently, microbial contributions to methane emissions from these systems emphasize the roles of acetoclastic and hydrogenotrophic methanogens, while less frequently considering methyl-group substrates (e.g., methanol and methylamines). Here, we integrated laboratory and field experiments to explore the potential for methylotrophic methanogenesis in Old Woman Creek (OWC), a temperate freshwater wetland located in Ohio, USA. We first demonstrated the capacity for methylotrophic methanogenesis in these soils using laboratory soil microcosms amended with trimethylamine. However, subsequent field porewater nuclear magnetic resonance (NMR) analyses to identify methanogenic substrates failed to detect evidence for methylamine compounds in soil porewaters, instead noting the presence of the methylotrophic substrate methanol. Accordingly, our wetland soil-derived metatranscriptomic data indicated that methanol utilization by the

Copyright © 2019 Narrowe et al.

Keywords: Methanomassiliicoccales ; metagenomics; metatranscriptomics; methanol; trimethylamine; wetlands

References

  1. Science. 2011 Jan 7;331(6013):50 - PubMed
  2. Nat Commun. 2017 Nov 16;8(1):1567 - PubMed
  3. Environ Microbiol. 2008 Jul;10(7):1850-60 - PubMed
  4. Appl Environ Microbiol. 2008 Oct;74(19):6114-20 - PubMed
  5. Archaea. 2017 Nov 2;2017:2756573 - PubMed
  6. Microb Ecol. 2010 Jul;60(1):206-13 - PubMed
  7. Mol Biol Evol. 2013 Apr;30(4):772-80 - PubMed
  8. ISME J. 2019 Dec;13(12):3126-3130 - PubMed
  9. Environ Microbiol. 2018 Dec;20(12):4314-4327 - PubMed
  10. Appl Environ Microbiol. 1994 Nov;60(11):3945-51 - PubMed
  11. Nat Methods. 2016 Jul;13(7):581-3 - PubMed
  12. Nat Microbiol. 2016 Oct 03;1:16170 - PubMed
  13. PLoS One. 2013 Apr 22;8(4):e61217 - PubMed
  14. Appl Environ Microbiol. 2012 Nov;78(21):7596-602 - PubMed
  15. Environ Microbiol. 2017 Jun;19(6):2192-2209 - PubMed
  16. ISME J. 2012 Aug;6(8):1621-4 - PubMed
  17. FEMS Microbiol Lett. 2009 Nov;300(1):1-10 - PubMed
  18. Nat Biotechnol. 2016 May;34(5):525-7 - PubMed
  19. ISME J. 2015 Jan;9(1):195-206 - PubMed
  20. Nat Rev Microbiol. 2008 Aug;6(8):579-91 - PubMed
  21. Res Microbiol. 2011 Nov;162(9):832-47 - PubMed
  22. Environ Microbiol. 2018 Dec;20(12):4596-4611 - PubMed
  23. Appl Environ Microbiol. 2019 May 30;85(12):null - PubMed
  24. FEMS Microbiol Ecol. 2016 Jan;92(1):null - PubMed
  25. Appl Environ Microbiol. 1983 Apr;45(4):1310-5 - PubMed
  26. Genome Biol Evol. 2018 Sep 1;10(9):2380-2393 - PubMed
  27. PeerJ. 2018 Sep 17;6:e5614 - PubMed
  28. Environ Microbiol. 2019 Feb;21(2):513-520 - PubMed
  29. BMC Genomics. 2014 Aug 13;15:679 - PubMed
  30. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6585-E6594 - PubMed
  31. Curr Opin Chem Biol. 2004 Oct;8(5):484-91 - PubMed
  32. Science. 2015 Oct 23;350(6259):434-8 - PubMed
  33. Nat Microbiol. 2018 Apr;3(4):470-480 - PubMed
  34. MBio. 2018 Nov 6;9(6): - PubMed
  35. Bioinformatics. 2007 Jan 1;23(1):127-8 - PubMed
  36. Proc Natl Acad Sci U S A. 1979 Jan;76(1):494-8 - PubMed
  37. Glob Chang Biol. 2013 May;19(5):1325-46 - PubMed
  38. PLoS Comput Biol. 2011 Oct;7(10):e1002195 - PubMed
  39. Stand Genomic Sci. 2016 Sep 06;11(1):59 - PubMed
  40. Bioinformatics. 2012 Jun 1;28(11):1420-8 - PubMed
  41. Science. 2018 Jan 19;359(6373):320-325 - PubMed
  42. Environ Microbiol. 2016 Sep;18(9):2843-55 - PubMed
  43. Mol Biol Evol. 2018 Feb 1;35(2):518-522 - PubMed
  44. Appl Environ Microbiol. 2012 Dec;78(23):8245-53 - PubMed
  45. Mol Biol Evol. 2015 Jan;32(1):268-74 - PubMed
  46. Genome Biol. 2011 Jun 24;12(6):R60 - PubMed
  47. Bioinformatics. 2009 Aug 1;25(15):1972-3 - PubMed
  48. MBio. 2014 Jul 15;5(4):e01371-14 - PubMed
  49. Environ Microbiol. 2018 Dec;20(12):4369-4384 - PubMed
  50. Appl Environ Microbiol. 2014 Sep;80(18):5761-72 - PubMed
  51. Appl Environ Microbiol. 2003 Sep;69(9):5483-91 - PubMed
  52. Environ Microbiol. 2017 Nov;19(11):4576-4586 - PubMed
  53. Nat Commun. 2018 Jan 16;9(1):239 - PubMed
  54. BMC Bioinformatics. 2010 Mar 08;11:119 - PubMed
  55. mSystems. 2019 May 7;4(3):null - PubMed
  56. Nat Methods. 2017 Jun;14(6):587-589 - PubMed
  57. Microbiology. 2002 Nov;148(Pt 11):3521-30 - PubMed
  58. ISME J. 2017 Nov;11(11):2407-2425 - PubMed
  59. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  60. Syst Biol. 2010 May;59(3):307-21 - PubMed
  61. Appl Environ Microbiol. 2015 Feb;81(4):1338-52 - PubMed
  62. Nat Biotechnol. 2019 Aug;37(8):852-857 - PubMed
  63. ISME J. 2019 Dec;13(12):2969-2983 - PubMed

Publication Types