Display options
Share it on

Angew Chem Int Ed Engl. 2020 Jan 13;59(3):1279-1285. doi: 10.1002/anie.201912043. Epub 2019 Dec 04.

Enantioenriched Methylene-Bridged Benzazocanes Synthesis by Organocatalytic and Superacid Activations.

Angewandte Chemie (International ed. in English)

Rodolphe Beaud, Bastien Michelet, Yasmin Reviriot, Agnès Martin-Mingot, Jean Rodriguez, Damien Bonne, Sébastien Thibaudeau

Affiliations

  1. Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France.
  2. Université de Poitiers, UMR-CNRS 7285, IC2MP, Equipe Synthèse Organique "Superacid Group", 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 9, France.

PMID: 31797509 DOI: 10.1002/anie.201912043

Abstract

Achieving in a straightforward way the synthesis of enantioenriched elaborated three-dimensional molecules related to bioactive natural products remains a long-standing quest in organic synthesis. Enantioselective organocatalysis potentially offers a unique opportunity to solve this problem, especially when combined with complementary modes of activation. Here, we report the sequential association of organocatalytic and superacid activations of simple linear achiral readily available precursors to promote the formation of unique highly elaborated chiral methylene-bridged benzazocanes exhibiting three to five fully-controlled stereocenters. This peculiar backbone, difficult to assemble by standard synthetic approaches, is closely related to bioactive natural and synthetic morphinans and benzomorphans. The formation of a highly reactive chiral 7-membered ring N-acyl iminium superelectrophilic ion, evidenced by low-temperature in situ NMR experiments, triggers a challenging stereoselective Friedel-Crafts-type cyclization.

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: Pictet-Spengler; acyliminium ion; benzazocane; organocatalysis; superelectrophile

References

  1. “The logic of chemical synthesis: Multistep synthesis of complex carbogenic molecules”: E. J. Corey, Nobel Lecture December 8, 1990. - PubMed
  2. D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas, D. M. Wilson, A. Wood, Nat. Chem. 2018, 10, 383-394. - PubMed
  3. C. J. Gerry, S. L. Schreiber, Nat. Rev. Drug. Discovery 2018, 17, 333-352. - PubMed
  4. D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443-4458. - PubMed
  5. P. I. Dalko, Comprehensive enantioselective organocatalysis: Catalysts, reactions and applications, Wiley-VCH, Weinheim, 2013. - PubMed
  6. I. Ojima, Catalytic asymmetric synthesis, Wiley, Hoboken, 2010. - PubMed
  7.   - PubMed
  8. G. Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi, F. Pesciaioli, M.-P. Song, G. Bartoli, P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 7200-7203; - PubMed
  9. Angew. Chem. 2009, 121, 7336-7339; - PubMed
  10. Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen, K. A. Jørgensen, J. Am. Chem. Soc. 2011, 133, 5053-5061; - PubMed
  11. M. E. Abbasov, B. M. Hudson, D. J. Tantillo, D. Romo, J. Am. Chem. Soc. 2014, 136, 4492-4495; - PubMed
  12. Y.-B. Wang, P. Yu, Z.-P. Zhou, J. Zhang, J. Wang, S.-H. Luo, Q.-S. Gu, K. N. Houk, B. Tan, Nat. Catal. 2019, 2, 504-513. - PubMed
  13.   - PubMed
  14. J. Alemán, S. Cabrera, Chem. Soc. Rev. 2013, 42, 774-793; - PubMed
  15. C. Grondal, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167-178; - PubMed
  16. S. B. Jones, B. Simmons, A. Mastracchio, D. W. C. MacMillan, Nature 2011, 475, 183-188; - PubMed
  17. H. Ishikawa, T. Suzuki, Y. Hayashi, Angew. Chem. Int. Ed. 2009, 48, 1304-1307; - PubMed
  18. Angew. Chem. 2009, 121, 1330-1333. - PubMed
  19. Z. Du, Z. Shao, Chem. Soc. Rev. 2013, 42, 1337-1378. - PubMed
  20. For a seminal contribution, see: S. Mayer, B. List, Angew. Chem. Int. Ed. 2006, 45, 4193-4195; - PubMed
  21. Angew. Chem. 2006, 118, 4299-4301. - PubMed
  22. For a comprehensive overview about ion-pairing modes found in asymmetric catalysis, see: K. Brak, E. N. Jacobsen, Angew. Chem. Int. Ed. 2013, 52, 534-561; - PubMed
  23. Angew. Chem. 2013, 125, 558-588. - PubMed
  24. For a seminal contribution, see: T. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton, D. W. C. MacMillan, Science 2007, 316, 582-585. - PubMed
  25. For a recent example, see: A. G. Capacci, J. T. Malinowski, N. J. McAlpine, J. Kuhne, D. W. C. MacMillan, Nat. Chem. 2017, 9, 1073-1077. - PubMed
  26. For a review, see: M. Silvi, P. Melchiorre, Nature 2018, 554, 41-49. - PubMed
  27. E. Zandvoort, E. M. Geertsema, B. J. Baas, W. J. Quax, G. J. Poelarends, Angew. Chem. Int. Ed. 2012, 51, 1240-1243; - PubMed
  28. Angew. Chem. 2012, 124, 1266-1269. - PubMed
  29. For a review, see: F. R. Bisogno, M. G. Lopez-Vidal, G. de Gonzalo, Adv. Synth. Catal. 2017, 359, 2026-2049. - PubMed
  30. For a review with Brønsted acids, see: D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047-9153. - PubMed
  31. For a review with Lewis acids, see: A. Gualandi, L. Mengozzi, C. M. Wilson, P. G. Cozzi, Chem. Asian J. 2014, 9, 984-995. - PubMed
  32. G. A. Olah, G. K. S. Prakash, A. Molnar, J. Sommer, Superacid Chemistry, Wiley, New York, 2009. - PubMed
  33. R. R. Naredla, D. A. Klumpp, Chem. Rev. 2013, 113, 6905-6948. - PubMed
  34. G. A. Olah, D. A. Klumpp, Superelectrophiles and their chemistry, Wiley, New-York, 2008. - PubMed
  35.   - PubMed
  36. U. Castelli, J.-F. Lohier, I. Druckenmüller, A. Mingot, C. Bachman, C. Alayrac, J. Marrot, K. Stierstorfer, A. Kornath, A.-C. Gaumont, S. Thibaudeau, Angew. Chem. Int. Ed. 2019, 58, 1355-1360; - PubMed
  37. Angew. Chem. 2019, 131, 1369-1374; - PubMed
  38. A. Martin, A. Arda, J. Désiré, A. Martin-Mingot, N. Probst, P. Sinaÿ, J. Jimenez-Barbero, S. Thibaudeau, Y. Blériot, Nat. Chem. 2016, 8, 186-191. - PubMed
  39. J. Fahy, A. Duflos, J.-P. Ribet, J.-C. Jacquesy, C. Berrier, M.-P. Jouannetaud, F. Zunino, J. Am. Chem. Soc. 1997, 119, 8576-8577. - PubMed
  40. H. Lachance, S. Wetzel, K. Kumar, H. Waldmann, J. Med. Chem. 2012, 55, 5989-6001. - PubMed
  41. K. R. Campos, P. J. Coleman, J. C. Alvarez, S. D. Dreher, R. M. Garbaccio, N. K. Terret, R. D. Tillyer, M. D. Truppo, E. R. Parmee, Science 2019, 363, eaat0805. - PubMed
  42. J. Kim, H. Kim, S. B. Park, J. Am. Chem. Soc. 2014, 136, 14629-14638. - PubMed
  43. For the first synthesis and evidence of methanobenzazocane pharmacological effect, see: P. H. Mazzocchi, B. C. Stahly, J. Med. Chem. 1981, 24, 457-462. - PubMed
  44.   - PubMed
  45. B. Yi, J. J. Sahn, P. M. Ardestani, A. K. Evans, L. L. Scott, J. Z. Chan, S. Iyer, A. Crisp, G. Zuniga, J. T. Pierce, S. F. Martin, M. Shamloo, J. Neurochem. 2017, 140, 561-575; - PubMed
  46. J. J. Sahn, G. L. Mejia, P. R. Ray, S. F. Martin, T. J. Price, ACS Chem. Neurosci. 2017, 8, 1801-1811. - PubMed
  47. G. Illuminati, L. Mandolini, Acc. Chem. Res. 1981, 14, 95-102. - PubMed
  48. For one isolated example of a diastereoselective approach, see: M. Sainsbury, M. F. Mahon, C. S. Williams, A. Naylor, D. I. C. Scopes, Tetrahedron 1991, 47, 4195-4210. - PubMed
  49. For the only reported enantioselective approach, see: R.-R. Liu, B.-L. Li, J. Lu, C. Shen, J.-R. Gao, Y.-X. Jia, J. Am. Chem. Soc. 2016, 138, 5198-5201. - PubMed
  50. S. Goudedranche, D. Pierrot, T. Constantieux, D. Bonne, J. Rodriguez, Chem. Commun. 2014, 50, 15605-15608. - PubMed
  51.   - PubMed
  52. J. Stöckigt, A. P. Antonchick, F. Wu, H. Waldmann, Angew. Chem. Int. Ed. 2011, 50, 8538-8564; - PubMed
  53. Angew. Chem. 2011, 123, 8692-8719; - PubMed
  54. M. M. Heravi, V. Zadsirjan, M. Malmir, Molecules 2018, 23, 943/1-943/48; - PubMed
  55. R. R. Nishanth, M. Barnali, C. Kaushik, ACS Comb. Sci. 2017, 19, 4199-4228. - PubMed
  56. P. Wu, T. E. Nielsen, Chem. Rev. 2017, 117, 7811-7856. - PubMed
  57.   - PubMed
  58. R. R. Naredla, C. Zheng, S. O. N. Lill, D. A. Klumpp, J. Am. Chem. Soc. 2011, 133, 13169-13175; - PubMed
  59. S. Nakamura, H. Sugimoto, T. Ohwada, J. Am. Chem. Soc. 2007, 129, 1724-1732. - PubMed
  60. A. Cousson, C. Gazeau, J.-P. Gesson, J.-C. Jacquesy, D. Rambaud, B. Renoux, Bull. Soc. Chim. Fr. 1994, 131, 95-104. - PubMed
  61. Carrying out the reaction in trichloroethanol (solvent used to prepare 3 a) led to the recovery of the starting material. The development of a one-pot procedure to synthesize 4 a from ketoamide 1 a and cinnamaldehyde was therefore abandoned. - PubMed
  62. Use of TiCl4 led to tetrahydropyrans, see: C. Sasso D'Elia, S. Goudedranche, T. Constantieux, M. Bella, D. Bonne, J. Rodriguez, Adv. Synth. Catal. 2017, 359, 3638-3641. - PubMed
  63. CCDC 1921167 (4 f) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. - PubMed
  64. Y. Zhang, D. J. DeSchepper, T. M. Gilbert, K. K. S. Sai, D. A. Klumpp, Chem. Commun. 2007, 4032-4034. - PubMed
  65. See the Supporting Information for more details. - PubMed
  66. K. Gopalaiah, H. B. Kagan, Chem. Rev. 2011, 111, 4599-4657. - PubMed
  67. Y. Liu, S.-J. Han, W.-B. Liu, B. M. Stoltz, Acc. Chem. Res. 2015, 48, 740-751. - PubMed
  68. K. K. S. Sai, P. M. Esteves, E. Tanoue da Penha, D. A. Klumpp, J. Org. Chem. 2008, 73, 6506-6512. - PubMed

Publication Types

Grant support