Display options
Share it on

Environ Sci Nano. 2019 Mar 01;6(3):763-777. doi: 10.1039/C8EN01376D. Epub 2019 Jan 28.

Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment.

Environmental science. Nano

Frederic Loosli, Jingjing Wang, Sarah Rothenberg, Michael Bizimis, Christopher Winkler, Olga Borovinskaya, Luca Flamigni, Mohammed Baalousha

Affiliations

  1. Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States.
  2. School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA.
  3. School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, United States.
  4. Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), 1991 Kraft Dr, Blacksburg, VA24061, USA.
  5. TOFWERK, Thun, Switzerland.

PMID: 31853367 PMCID: PMC6919659 DOI: 10.1039/C8EN01376D

Abstract

Sanitary sewer overflows (SSOs) are a common problem across the United States. An estimated 23,000-75,000 SSOs occurred annually in 2004 discharging between 11 and 38 billion liters of untreated wastewater to receiving waters. SSOs release many contaminants, including engineered nanomaterials (ENMs), to receiving water bodies. Measuring ENM concentrations in environmental samples remains a key challenge in environmental nanotechnology and requires the distinction between natural and engineered particles. This distinction between natural and engineered particles is often hampered by the similarities in the intrinsic properties of natural and engineered particles such as particle size, composition, density, surface chemistry, and by the limitations of the available nanometrology tools. To overcome these challenges, we applied a multi-method approach to measure the concentrations and properties of TiO

References

  1. Environ Sci Technol. 2008 Jun 15;42(12):4447-53 - PubMed
  2. Anal Chem. 2014 May 20;86(10):4668-74 - PubMed
  3. Environ Sci Technol. 2009 Sep 1;43(17):6757-63 - PubMed
  4. Waste Manag. 2015 Sep;43:407-20 - PubMed
  5. Biol Trace Elem Res. 2016 Jul;172(1):1-36 - PubMed
  6. Environ Sci Technol. 2006 Apr 1;40(7):2156-62 - PubMed
  7. Environ Sci Technol. 2009 Jun 15;43(12):4227-33 - PubMed
  8. Environ Toxicol Chem. 2012 Jan;31(1):32-49 - PubMed
  9. Environ Pollut. 2013 Oct;181:287-300 - PubMed
  10. Anal Chem. 2011 Dec 15;83(24):9361-9 - PubMed
  11. Sci Total Environ. 2016 Jul 1;557-558:740-53 - PubMed
  12. J Environ Monit. 2011 Apr;13(4):1046-52 - PubMed
  13. IARC Monogr Eval Carcinog Risks Hum. 2010;93:1-413 - PubMed
  14. J Environ Monit. 2011 May;13(5):1145-55 - PubMed
  15. Integr Environ Assess Manag. 2015 Jan;11(1):10-20 - PubMed
  16. Sci Total Environ. 2015 Dec 15;537:479-86 - PubMed
  17. Toxicol Res (Camb). 2017 Jan 4;6(2):115-133 - PubMed
  18. Environ Geochem Health. 2009 Feb;31(1):1-10 - PubMed
  19. ACS Nano. 2009 Jul 28;3(7):1616-9 - PubMed
  20. Environ Sci Technol. 2014 May 20;48(10):5415-22 - PubMed
  21. J Environ Monit. 2011 May;13(5):1195-203 - PubMed
  22. Anal Bioanal Chem. 2005 Oct;383(4):549-56 - PubMed
  23. J Chromatogr A. 2009 Jan 16;1216(3):503-9 - PubMed
  24. Environ Sci Technol. 2012 Feb 21;46(4):2242-50 - PubMed
  25. Environ Sci Technol. 2015 Mar 3;49(5):2587-93 - PubMed
  26. Environ Sci Technol. 2008 Aug 1;42(15):5828-33 - PubMed
  27. Environ Toxicol Chem. 2014 Jun;33(6):1346-53 - PubMed
  28. Environ Health Perspect. 2008 Apr;116(4):441-7 - PubMed
  29. Part Fibre Toxicol. 2013 Apr 15;10:15 - PubMed
  30. Environ Sci Technol. 2009 Dec 15;43(24):9216-22 - PubMed
  31. J Environ Qual. 2018 Sep;47(5):1258-1266 - PubMed
  32. Bull Environ Contam Toxicol. 2017 May;98(5):595-600 - PubMed

Publication Types

Grant support