Display options
Share it on

Front Genet. 2019 Nov 07;10:963. doi: 10.3389/fgene.2019.00963. eCollection 2019.

A Generic Multivariate Framework for the Integration of Microbiome Longitudinal Studies With Other Data Types.

Frontiers in genetics

Antoine Bodein, Olivier Chapleur, Arnaud Droit, Kim-Anh Lê Cao

Affiliations

  1. Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada.
  2. Hydrosystems and Biopresses Research Unit, Irstea, Antony, France.
  3. Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.

PMID: 31803221 PMCID: PMC6875829 DOI: 10.3389/fgene.2019.00963

Abstract

Simultaneous profiling of biospecimens using different technological platforms enables the study of many data types, encompassing microbial communities, omics, and meta-omics as well as clinical or chemistry variables. Reduction in costs now enables longitudinal or time course studies on the same biological material or system. The overall aim of such studies is to investigate relationships between these longitudinal measures in a holistic manner to further decipher the link between molecular mechanisms and microbial community structures, or host-microbiota interactions. However, analytical frameworks enabling an integrated analysis between microbial communities and other types of biological, clinical, or phenotypic data are still in their infancy. The challenges include few time points that may be unevenly spaced and unmatched between different data types, a small number of unique individual biospecimens, and high individual variability. Those challenges are further exacerbated by the inherent characteristics of microbial communities-derived data (e.g., sparse, compositional). We propose a generic data-driven framework to integrate different types of longitudinal data measured on the same biological specimens with microbial community data and select key temporal features with strong associations within the same sample group. The framework ranges from filtering and modeling to integration using smoothing splines and multivariate dimension reduction methods to address some of the analytical challenges of microbiome-derived data. We illustrate our framework on different types of multi-omics case studies in bioreactor experiments as well as human studies.

Copyright © 2019 Bodein, Chapleur, Droit and Lê Cao.

Keywords: data integration; dimension reduction; feature selection; multi-omics; splines; time course

References

  1. BMC Gastroenterol. 2016 Jul 30;16(1):86 - PubMed
  2. Annu Rev Plant Biol. 2003;54:519-46 - PubMed
  3. Biometrika. 2008;95(3):601-619 - PubMed
  4. PLoS One. 2015 Aug 27;10(8):e0134540 - PubMed
  5. Prz Gastroenterol. 2018;13(2):85-92 - PubMed
  6. BMC Physiol. 2010 Oct 08;10:19 - PubMed
  7. Environ Microbiol. 2010 Jan;12(1):118-23 - PubMed
  8. Microbiome. 2014 May 05;2:15 - PubMed
  9. J Biol Chem. 2003 Jul 25;278(30):27575-85 - PubMed
  10. Anal Chem. 2006 Feb 1;78(3):779-87 - PubMed
  11. PLoS Comput Biol. 2017 Aug 18;13(8):e1005706 - PubMed
  12. PLoS Biol. 2007 Jul;5(7):e177 - PubMed
  13. BMC Microbiol. 2018 Aug 7;18(1):83 - PubMed
  14. Bioinformatics. 2019 Sep 1;35(17):3055-3062 - PubMed
  15. Annu Rev Microbiol. 2012;66:371-89 - PubMed
  16. Bioresour Technol. 2016 May;207:92-101 - PubMed
  17. Front Microbiol. 2017 Nov 15;8:2224 - PubMed
  18. Chemosphere. 2014 Feb;97:115-9 - PubMed
  19. PLoS Comput Biol. 2015 Mar 16;11(3):e1004075 - PubMed
  20. Bioinformatics. 2017 May 1;33(9):1286-1292 - PubMed
  21. Biostatistics. 2014 Jul;15(3):569-83 - PubMed
  22. Biochem J. 2017 May 16;474(11):1823-1836 - PubMed
  23. Front Microbiol. 2018 Apr 23;9:785 - PubMed
  24. Microbiome. 2016 Jul 08;4(1):38 - PubMed
  25. PLoS Comput Biol. 2017 Nov 3;13(11):e1005752 - PubMed
  26. Sci Rep. 2017 Nov 24;7(1):16252 - PubMed
  27. PeerJ. 2015 Jun 18;3:e1029 - PubMed
  28. Data Brief. 2018 Jul 06;19:2235-2239 - PubMed
  29. Nat Biotechnol. 2012 Jun 07;30(6):513-20 - PubMed
  30. FEMS Microbiol Ecol. 2014 Mar;87(3):616-29 - PubMed
  31. Stat Appl Genet Mol Biol. 2008;7(1):Article 35 - PubMed
  32. Microbiome. 2015 Dec 01;3:59 - PubMed
  33. Sci Rep. 2017 Jan 09;7:40131 - PubMed
  34. Stat Med. 2005 Apr 30;24(8):1153-67 - PubMed
  35. PLoS Comput Biol. 2012;8(8):e1002624 - PubMed
  36. Bioinformatics. 2006 Aug 1;22(15):1855-62 - PubMed
  37. ISME J. 2017 Nov;11(11):2526-2537 - PubMed
  38. Genome Biol. 2016 Jun 03;17(1):121 - PubMed
  39. Microbiome. 2018 Feb 13;6(1):32 - PubMed
  40. Nat Rev Microbiol. 2011 Apr;9(4):244-53 - PubMed
  41. Front Microbiol. 2018 Jan 24;9:36 - PubMed
  42. Diabetes Care. 2018 Oct;41(10):2178-2186 - PubMed
  43. PLoS One. 2016 Aug 11;11(8):e0160169 - PubMed
  44. Nat Methods. 2010 May;7(5):335-6 - PubMed
  45. Bioinformatics. 2018 Apr 15;34(8):1287-1294 - PubMed
  46. Curr Opin Microbiol. 2015 Jun;25:56-66 - PubMed
  47. Nature. 2016 Apr 28;532(7600):465-470 - PubMed
  48. Biostatistics. 2009 Jul;10(3):515-34 - PubMed
  49. Bioinformatics. 2018 Feb 1;34(3):372-380 - PubMed
  50. Appl Environ Microbiol. 2011 Jun;77(11):3884-7 - PubMed

Publication Types