Display options
Share it on

Plant Signal Behav. 2020;15(1):1704528. doi: 10.1080/15592324.2019.1704528. Epub 2019 Dec 22.

Genetic mechanisms of salt stress responses in halophytes.

Plant signaling & behavior

Cunxian Fan

Affiliations

  1. Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China.

PMID: 31868075 PMCID: PMC7012083 DOI: 10.1080/15592324.2019.1704528

Abstract

Abiotic stress is a major threat to plant growth and development, resulting in extensive crop loss worldwide. Plants react to abiotic stresses through physiological, biochemical, molecular, and genetic adaptations that promote survival. Exploring the molecular mechanisms involved in abiotic stress responses across various plant species is essential for improving crop yields in unfavorable environments. Halophytes are characterized as plants that survive to reproduce in soils containing high salt concentrations, and thus act as an ideal model to comprehend complicated genetic and physiological mechanisms of salinity stress tolerance. Plant ecologists classify halophytes into three main groups: euhalophytes, recretohalophytes, and pseudo-halophytes. Recent genetic and molecular research has showed complicated regulatory networks by which halophytes coordinate stress adaptation and tolerance. Furthermore, investigation of natural variations in these stress responses has supplied new perspectives on the evolution of mechanisms that regulate tolerance and adaptation. This review discusses the current understanding of the genetic mechanisms that contribute to salt-stress tolerance among different classes of halophytes.

Keywords: Halophytes; adaptation; salt stress; salt tolerance

References

  1. J Plant Physiol. 2017 Nov;218:109-120 - PubMed
  2. Front Plant Sci. 2017 May 08;8:713 - PubMed
  3. Sci Rep. 2018 Nov 1;8(1):16203 - PubMed
  4. Plant Mol Biol. 2012 Feb;78(3):289-300 - PubMed
  5. Plant Physiol Biochem. 2018 Sep;130:511-516 - PubMed
  6. Plant Mol Biol. 2006 Jan;60(1):41-50 - PubMed
  7. Plant Mol Biol. 2014 Oct;86(3):237-53 - PubMed
  8. Int J Genomics. 2015;2015:875497 - PubMed
  9. Plant Mol Biol. 2016 Jun;91(3):241-56 - PubMed
  10. PLoS One. 2015 Feb 02;10(2):e0117175 - PubMed
  11. Plant Cell Physiol. 2019 Jan 1;60(1):85-106 - PubMed
  12. Cell. 2016 Oct 6;167(2):313-324 - PubMed
  13. Plant Cell Rep. 2018 Aug;37(8):1091-1100 - PubMed
  14. Biotechnol Lett. 2008 Aug;30(8):1501-7 - PubMed
  15. Plant Physiol Biochem. 2015 Dec;97:20-7 - PubMed
  16. BMC Genomics. 2013 Jan 16;14:29 - PubMed
  17. Physiol Plant. 2011 Dec;143(4):355-66 - PubMed
  18. BMC Plant Biol. 2019 Sep 6;19(1):388 - PubMed
  19. BMC Plant Biol. 2019 Jan 11;19(1):21 - PubMed
  20. Plant Cell Physiol. 2011 May;52(5):909-21 - PubMed
  21. Plant Mol Biol. 2013 Sep;83(1-2):77-87 - PubMed
  22. Plant Physiol Biochem. 2013 Aug;69:82-9 - PubMed
  23. Front Plant Sci. 2018 Jan 22;9:7 - PubMed
  24. Plant Cell Environ. 2015 Aug;38(8):1637-57 - PubMed
  25. BMC Plant Biol. 2013 Nov 15;13:180 - PubMed
  26. Plant Mol Biol. 2011 Apr;75(6):567-78 - PubMed
  27. J Integr Plant Biol. 2018 Sep;60(9):805-826 - PubMed
  28. Physiol Plant. 2011 Apr;141(4):343-51 - PubMed
  29. Mol Plant. 2019 Aug 5;12(8):1060-1074 - PubMed
  30. Front Plant Sci. 2017 Aug 02;8:1337 - PubMed
  31. Indian J Biochem Biophys. 2010 Oct;47(5):298-305 - PubMed
  32. Plant Signal Behav. 2019;14(11):1659705 - PubMed
  33. J Integr Plant Biol. 2018 Jul;60(7):591-607 - PubMed
  34. Funct Plant Biol. 2018 Feb;45(3):350-361 - PubMed
  35. Plant Cell Physiol. 2017 Feb 1;58(2):329-341 - PubMed
  36. Biochem Genet. 2010 Aug;48(7-8):669-79 - PubMed
  37. Plant Signal Behav. 2019;14(10):e1644595 - PubMed
  38. J Integr Plant Biol. 2010 Mar;52(3):308-14 - PubMed
  39. BMC Plant Biol. 2018 Nov 29;18(1):315 - PubMed
  40. J Integr Plant Biol. 2010 May;52(5):468-75 - PubMed
  41. Plant J. 2010 May 1;62(4):539-48 - PubMed
  42. Nat Plants. 2018 Dec;4(12):989-996 - PubMed
  43. Plant Mol Biol. 2014 Oct;86(3):303-17 - PubMed
  44. Front Plant Sci. 2019 Nov 12;10:1456 - PubMed
  45. Front Plant Sci. 2018 May 24;9:677 - PubMed
  46. Plant Physiol Biochem. 2015 Oct;95:41-8 - PubMed
  47. Plant Methods. 2019 Aug 13;15:93 - PubMed
  48. Trends Plant Sci. 2019 Oct;24(10):884-887 - PubMed
  49. J Plant Physiol. 2019 Aug;239:38-51 - PubMed
  50. Front Plant Sci. 2018 Feb 22;9:217 - PubMed
  51. Sci Rep. 2017 Feb 24;7:43363 - PubMed
  52. Front Plant Sci. 2019 Mar 29;10:333 - PubMed
  53. BMC Plant Biol. 2018 Dec 13;18(1):352 - PubMed
  54. Front Plant Sci. 2016 Dec 26;7:1963 - PubMed
  55. Plant Sci. 2018 Jul;272:276-293 - PubMed
  56. Ann Bot. 2015 Feb;115(3):541-53 - PubMed
  57. Plant Physiol Biochem. 2020 Jan;146:287-293 - PubMed
  58. Plant Biol (Stuttg). 2019 Sep;21(5):796-804 - PubMed
  59. Funct Plant Biol. 2014 Aug;41(8):790-802 - PubMed
  60. Plant Sci. 2019 Aug;285:55-67 - PubMed
  61. Front Plant Sci. 2016 Jun 30;7:977 - PubMed
  62. BMC Plant Biol. 2018 Aug 13;18(1):168 - PubMed
  63. Plant Biotechnol J. 2018 Dec;16(12):2053-2062 - PubMed
  64. Planta. 2018 Jun;247(6):1307-1321 - PubMed
  65. PLoS One. 2018 Jan 23;13(1):e0191406 - PubMed
  66. Plant Physiol Biochem. 2018 Jun;127:231-237 - PubMed
  67. Mol Plant. 2019 Aug 5;12(8):1047-1059 - PubMed
  68. Funct Plant Biol. 2016 Mar;43(3):244-253 - PubMed
  69. J Proteome Res. 2009 Jul;8(7):3331-45 - PubMed
  70. Funct Plant Biol. 2018 Jan;46(1):82-92 - PubMed
  71. Front Plant Sci. 2014 Dec 17;5:702 - PubMed
  72. Plant Sci. 2015 Sep;238:286-96 - PubMed
  73. Front Plant Sci. 2018 Oct 17;9:1515 - PubMed
  74. J Exp Bot. 2014 Jul;65(13):3657-67 - PubMed
  75. Am J Bot. 2013 Sep;100(9):1860-70 - PubMed
  76. Plant Cell Physiol. 2014 Jan;55(1):148-61 - PubMed
  77. J Plant Physiol. 2011 Mar 15;168(5):449-58 - PubMed
  78. Front Plant Sci. 2019 Jun 04;10:705 - PubMed
  79. Plant Biotechnol J. 2020 Jan;18(1):96-105 - PubMed
  80. Plant Cell Physiol. 2019 Aug 1;60(8):1829-1841 - PubMed
  81. Front Plant Sci. 2019 Jan 09;9:1954 - PubMed
  82. Plant J. 2018 Jun;94(5):857-866 - PubMed

MeSH terms

Publication Types