Display options
Share it on

Phys Rev Lett. 2019 Nov 29;123(22):221802. doi: 10.1103/PhysRevLett.123.221802.

Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.

Physical review letters

M Aker, K Altenmüller, M Arenz, M Babutzka, J Barrett, S Bauer, M Beck, A Beglarian, J Behrens, T Bergmann, U Besserer, K Blaum, F Block, S Bobien, K Bokeloh, J Bonn, B Bornschein, L Bornschein, H Bouquet, T Brunst, T S Caldwell, L La Cascio, S Chilingaryan, W Choi, T J Corona, K Debowski, M Deffert, M Descher, P J Doe, O Dragoun, G Drexlin, J A Dunmore, S Dyba, F Edzards, L Eisenblätter, K Eitel, E Ellinger, R Engel, S Enomoto, M Erhard, D Eversheim, M Fedkevych, A Felden, S Fischer, B Flatt, J A Formaggio, F M Fränkle, G B Franklin, H Frankrone, F Friedel, D Fuchs, A Fulst, D Furse, K Gauda, H Gemmeke, W Gil, F Glück, S Görhardt, S Groh, S Grohmann, R Grössle, R Gumbsheimer, M Ha Minh, M Hackenjos, V Hannen, F Harms, J Hartmann, N Haußmann, F Heizmann, K Helbing, S Hickford, D Hilk, B Hillen, D Hillesheimer, D Hinz, T Höhn, B Holzapfel, S Holzmann, T Houdy, M A Howe, A Huber, T M James, A Jansen, A Kaboth, C Karl, O Kazachenko, J Kellerer, N Kernert, L Kippenbrock, M Kleesiek, M Klein, C Köhler, L Köllenberger, A Kopmann, M Korzeczek, A Kosmider, A Kovalík, B Krasch, M Kraus, H Krause, L Kuckert, B Kuffner, N Kunka, T Lasserre, T L Le, O Lebeda, M Leber, B Lehnert, J Letnev, F Leven, S Lichter, V M Lobashev, A Lokhov, M Machatschek, E Malcherek, K Müller, M Mark, A Marsteller, E L Martin, C Melzer, A Menshikov, S Mertens, L I Minter, S Mirz, B Monreal, P I Morales Guzmán, K Müller, U Naumann, W Ndeke, H Neumann, S Niemes, M Noe, N S Oblath, H-W Ortjohann, A Osipowicz, B Ostrick, E Otten, D S Parno, D G Phillips, P Plischke, A Pollithy, A W P Poon, J Pouryamout, M Prall, F Priester, M Röllig, C Röttele, P C-O Ranitzsch, O Rest, R Rinderspacher, R G H Robertson, C Rodenbeck, P Rohr, Ch Roll, S Rupp, M Ryšavý, R Sack, A Saenz, P Schäfer, L Schimpf, K Schlösser, M Schlösser, L Schlüter, H Schön, K Schönung, M Schrank, B Schulz, J Schwarz, H Seitz-Moskaliuk, W Seller, V Sibille, D Siegmann, A Skasyrskaya, M Slezák, A Špalek, F Spanier, M Steidl, N Steinbrink, M Sturm, M Suesser, M Sun, D Tcherniakhovski, H H Telle, T Thümmler, L A Thorne, N Titov, I Tkachev, N Trost, K Urban, D Vénos, K Valerius, B A VanDevender, R Vianden, A P Vizcaya Hernández, B L Wall, S Wüstling, M Weber, C Weinheimer, C Weiss, S Welte, J Wendel, K J Wierman, J F Wilkerson, J Wolf, W Xu, Y-R Yen, M Zacher, S Zadorozhny, M Zbořil, G Zeller,

Affiliations

  1. Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  2. Institute for Technical Physics (ITEP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  3. Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
  4. IRFU (DPhP & APC), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
  5. Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany.
  6. Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 14-16, 53115 Bonn, Germany.
  7. Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany.
  8. Laboratory for Nuclear Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  9. Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 9, 48149 Münster, Germany.
  10. Institut für Physik, Johannes-Gutenberg-Universität Mainz, 55099 Mainz, Germany.
  11. Institute for Data Processing and Electronics (IPE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  12. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  13. Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
  14. Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA.
  15. Department of Physics, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
  16. Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA.
  17. Nuclear Physics Institute of the CAS, v. v. i., CZ-250 68 ?ež, Czech Republic.
  18. Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
  19. Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow, Russia.
  20. Institute for Nuclear and Particle Astrophysics and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  21. University of Applied Sciences (HFD) Fulda, Leipziger Straße 123, 36037 Fulda, Germany.
  22. Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
  23. Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.
  24. Departamento de Química Física Aplicada, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
  25. Project, Process, and Quality Management (PPQ), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

PMID: 31868426 DOI: 10.1103/PhysRevLett.123.221802

Abstract

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9})  eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.

Publication Types