Display options
Share it on

Sci Rep. 2020 Jan 15;10(1):406. doi: 10.1038/s41598-019-57277-y.

Emergent features break the rules of crowding.

Scientific reports

Natalia Melnik, Daniel R Coates, Bilge Sayim

Affiliations

  1. Institute of Psychology, University of Bern, Bern, 3012, Switzerland. [email protected].
  2. Institute of Psychology, University of Bern, Bern, 3012, Switzerland.
  3. College of Optometry, University of Houston, Houston, Texas, 77204, USA.
  4. SCALab - Sciences Cognitives et Sciences Affectives, CNRS, UMR 9193, University of Lille, Lille, 59000, France.

PMID: 31941984 PMCID: PMC6962356 DOI: 10.1038/s41598-019-57277-y

Abstract

Crowding is the deleterious influence of surrounding objects (flankers) on target identification. A central rule of crowding is that it is stronger when the target and the flankers are similar. Here, we show in three experiments how emergent features break this rule. Observers identified targets with various emergent features consisting of a pair of adjacent chevrons either pointing in opposite ('Diamonds' and 'Xs'), or the same (both up or down) directions. Targets were flanked by Diamonds or Xs, resulting in conditions with different levels of target-flanker similarity. Despite high target-flanker similarity, Diamonds were identified better than Xs when flanked by Diamonds. Participants' judgments of target conspicuity, however, showed that Diamonds were not perceived to stand out more strongly from X than Diamond flankers. Next, we asked observers to indicate whether all presented items were identical. We found superior performance with all Diamonds compared to all Xs, indicating that display uniformity judgments benefitted from the emergent features of Diamonds. Our results showed that emergent features and the information content of the entire display strongly modulated crowding. We suggest that conventional crowding rules only hold when target and flankers are artificially constrained to be mutually independent.

References

  1. Bouma, H. Interaction Effects in Parafoveal Letter Recognition. Nature 226, 177–178 (1970). - PubMed
  2. Bouma, H. Visual interference in the parafoveal recognition of initial and final letters of words. Vision Res. 13, 767–782 (1973). - PubMed
  3. Pelli, D. G. & Tillman, K. A. The uncrowded window of object recognition. Nat. Neurosci. 11, 1129–1135 (2008). - PubMed
  4. Whitney, D. & Levi, D. M. Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn. Sci. 15, 160–168 (2011). - PubMed
  5. Coates, D. R., Wagemans, J. & Sayim, B. Diagnosing the Periphery: Using the Rey–Osterrieth Complex Figure Drawing Test to Characterize Peripheral Visual Function. i-Percept. 8, 204166951770544, https://doi.org/10.1177/2041669517705447 (2017). - PubMed
  6. Sayim, B. & Wagemans, J. Appearance changes and error characteristics in crowding revealed by drawings. J. Vis. 17, 8, https://doi.org/10.1167/17.11.8 (2017). - PubMed
  7. Greenwood, J. A., Bex, P. J. & Dakin, S. C. Crowding Changes Appearance. Curr. Biol. 20, 496–501 https://doi.org/10.1016/j.cub.2010.01.023 (2010). - PubMed
  8. Toet, A. & Levi, D. M. The two-dimensional shape of spatial interaction zones in the parafovea. Vision Res. 32, 1349–1357 (1992). - PubMed
  9. Kooi, F. L., Toet, A., Tripathy, S. P. & Levi, D. M. The effect of similarity and duration on spatial interaction in peripheral vision. Spat. Vis. 8, 255–279 (1994). - PubMed
  10. Manassi, M., Sayim, B. & Herzog, M. H. When crowding of crowding leads to uncrowding. J. Vis. 13, 10–10, https://doi.org/10.1167/13.13.10 (2013). - PubMed
  11. Põder, E. Effect of colour pop-out on the recognition of letters in crowding conditions. Psychol. Res. 71, 641–645 (2007). - PubMed
  12. Chung, S. T. L. & Mansfield, J. S. Contrast polarity differences reduce crowding but do not benefit reading performance in peripheral vision. Vision Res. 49, 2782–2789 (2009). - PubMed
  13. Nazir, T. A. Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision. Vision Res. 32, 771–777 (1992). - PubMed
  14. Zahabi, S. & Arguin, M. A crowdful of letters: Disentangling the role of similarity, eccentricity and spatial frequencies in letter crowding. Vision Res. 97, 45–51 (2014). - PubMed
  15. Sayim, B., Westheimer, G. & Herzog, M. H. Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity. J. Vis. 8, 12–12, https://doi.org/10.1167/8.8.12 (2008). - PubMed
  16. Bernard, J.-B. & Chung, S. T. L. The dependence of crowding on flanker complexity and target-flanker similarity. J. Vis. 11, 1–1, https://doi.org/10.1167/11.8.1 (2011). - PubMed
  17. Banks, W. P., Larson, D. W. & Prinzmetal, W. Asymmetry of visual interference. Percept. Psychophys. 25, 447–456 (1979). - PubMed
  18. Malania, M., Herzog, M. H. & Westheimer, G. Grouping of contextual elements that affect vernier thresholds. J. Vis. 7, 1, https://doi.org/10.1167/7.2.1 (2007). - PubMed
  19. Manassi, M., Sayim, B. & Herzog, M. H. Grouping, pooling, and when bigger is better in visual crowding. J. Vis. 12, 13–13, https://doi.org/10.1167/12.10.13 (2012). - PubMed
  20. Sayim, B., Westheimer, G. & Herzog, M. H. Gestalt Factors Modulate Basic Spatial Vision. Psychol. Sci. 21, 641–644 (2010). - PubMed
  21. Sayim, B., Westheimer, G. & Herzog, M. H. Quantifying target conspicuity in contextual modulation by visual search. J. Vis. 11, 6–6, https://doi.org/10.1167/11.1.6 (2011). - PubMed
  22. Livne, T. & Sagi, D. Configuration influence on crowding. J. Vis. 7(4), 1–12, https://doi.org/10.1167/7.2.4 (2007). - PubMed
  23. Livne, T. & Sagi, D. How do flankers’ relations affect crowding? J. Vis. 10, 51–14, https://doi.org/10.1167/10.3.1 (2010). - PubMed
  24. Saarela, T. P., Sayim, B., Westheimer, G. & Herzog, M. H. Global stimulus configuration modulates crowding. J. Vis. 9, 5–5, https://doi.org/10.1167/9.2.5 (2009). - PubMed
  25. Sayim & Cavanagh, P. Grouping and Crowding Affect Target Appearance over Different Spatial Scales. PLoS ONE 8, e71188, https://doi.org/10.1371/journal.pone.0071188 (2013). - PubMed
  26. Saarela, T. P., Westheimer, G. & Herzog, M. H. The effect of spacing regularity on visual crowding. J. Vis. 10, 17–17, https://doi.org/10.1167/10.10.17 (2010). - PubMed
  27. Felisberti, F. M., Solomon, J. A. & Morgan, M. J. The Role of Target Salience in Crowding. Perception 34, 823–833 (2005). - PubMed
  28. Sayim, B., Greenwood, J. A. & Cavanagh, P. Foveal target repetitions reduce crowding. J. Vis. 14, 4–4, https://doi.org/10.1167/14.6.4 (2014). - PubMed
  29. Melnik, N., Coates, D. R. & Sayim, B. Emergent features in the crowding zone: When target–flanker grouping surmounts crowding. J. Vis. 18, 19, https://doi.org/10.1167/18.9.19 (2018). - PubMed
  30. Pomerantz, J. & Cragin, A. Crowding, Grouping, and the Configural Superiority Effect. J. Vis. 12, 1286–1286, https://doi.org/10.1167/12.9.1286 (2012). - PubMed
  31. Pomerantz, J., Sager, L. C. & Stoever, R. J. Perception of wholes and of their component parts: some configural superiority effects. J. Exp. Psychol. Hum. Percept. Perform. 3, 422–435 (1977). - PubMed
  32. Weisstein, N. & Harris, C. S. Visual Detection of Line Segments: An Object-Superiority Effect. Science 186, 752–755 (1974). - PubMed
  33. Biederman, I., Mezzanotte, R. J. & Rabinowitz, J. C. Scene perception: Detecting and judging objects undergoing relational violations. Cognit. Psychol. 14, 143–177 (1982). - PubMed
  34. Bar, M. Visual objects in context. Nat. Rev. Neurosci. 5, 617–629 (2004). - PubMed
  35. Wijntjes, M. W. A. & Rosenholtz, R. Context mitigates crowding: Peripheral object recognition in real-world images. Cognition 180, 158–164 (2018). - PubMed
  36. Hollingworth, A. & Henderson, J. M. Semantic Informativeness Mediates the Detection of Changes in Natural Scenes. Vis. Cogn. 7, 213–235 (2000). - PubMed
  37. Reicher, G. M. Perceptual recognition as a function of meaningfulness of stimulus material. J. Exp. Psychol. 81, 275–280 (1969). - PubMed
  38. Torralba, A. Contextual Priming for Object Detection. Int. J. Comput. Vis. 53, 169–191 (2003). - PubMed
  39. Oliva, A. & Torralba, A. The role of context in object recognition. Trends Cogn. Sci. 11, 520–527 (2007). - PubMed
  40. Geisler, W. S., Perry, J. S., Super, B. J. & Gallogly, D. P. Edge co-occurrence in natural images predicts contour grouping performance. Vision Res. 41, 711–724 (2001). - PubMed
  41. Taylor, H. & Sayim, B. Crowding, attention and consciousness: In support of the inference hypothesis. Mind Lang. 33, 17–33 (2018). - PubMed
  42. Nickerson, R. S. Response Times for Same-Different Judgments. Percept. Mot. Skills 20, 15–18 (1965). - PubMed
  43. Bindra, D., Donderi, D. C. & Nishisato, S. Decision latencies of “same” and “different” judgments. Percept. Psychophys. 3, 121–136 (1968). - PubMed
  44. Young, M. E. & Wasserman, E. A. Detecting variety: What’s so special about uniformity? J. Exp. Psychol. Gen. 131, 131–143 (2002). - PubMed
  45. Sayim, B. & Taylor, H. Letters Lost: Capturing Appearance in Crowded Peripheral Vision Reveals a New Kind of Masking. Psychol. Sci. 095679761984716 (2019). - PubMed
  46. Peirce, J. W. PsychoPy—Psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007). - PubMed
  47. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. https://www.R-project.org/ (2017). - PubMed
  48. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, https://doi.org/10.18637/jss.v067.i01 (2015). - PubMed
  49. Fox, J. & Weisberg, S. An R companion to applied regression. (Sage Publications, Inc, 2019). - PubMed
  50. Lenth, R. Emmeans: estimated marginal means, aka least-squares means. (2018). - PubMed
  51. Attneave, F. & Arnoult, M. D. The quantitative study of shape and pattern perception. Psychol. Bull. 53, 452–471 (1956). - PubMed
  52. Pelli, D. G., Burns, C. W., Farell, B. & Moore-Page, D. C. Feature detection and letter identification. Vision Res. 46, 4646–4674 (2006). - PubMed
  53. Arnoult, M. D. Prediction of perceptual responses from structural characteristics of the stimulus. Percept. Mot. Skills 11, 261 (1960). - PubMed
  54. Attneave, F. Physical determinants of the judged complexity of shapes. J. Exp. Psychol. 53, 221–227 (1957). - PubMed
  55. Zhang, J.-Y., Zhang, T., Xue, F., Liu, L. & Yu, C. Legibility of Chinese characters in peripheral vision and the top-down influences on crowding. Vision Res. 49, 44–53 (2009). - PubMed
  56. Pomerantz, J. R. & Cragin, A. I. Emergent features and feature combination in The Oxford handbook of perceptual organization (ed. Wagemans, J.) 88–107 (2015). - PubMed
  57. Pomerantz, J. R. & Garner, W. R. Stimules configuration in selective attention tasks. Percept. Psychophys. 14, 565–569 (1973). - PubMed
  58. Pirkner, Y. & Kimchi, R. Crowding and perceptual organization: Target’s objecthood influences the relative strength of part-level and configural-level crowding. J. Vis. 17(7), 1–18, https://doi.org/10.1167/17.11.7 (2017). - PubMed
  59. Elder, J. & Zucker, S. The effect of contour closure on the rapid discrimination of two-dimensional shapes. Vision Res. 33, 981–991 (1993). - PubMed
  60. Meng, Q. et al. The dissociations of visual processing of “hole” and “no-hole” stimuli: An functional magnetic resonance imaging study. Brain Behav. 8, e00979, https://doi.org/10.1002/brb3.979 (2018). - PubMed
  61. Chen, L. The topological approach to perceptual organization. Vis. Cogn. 12, 553–637 (2005). - PubMed
  62. Pomerantz, J. Wholes, holes, and basic features in vision. Trends Cogn. Sci. 7, 471–473 (2003). - PubMed
  63. Donderi, D. C. & Zelnicker, D. Parallel processing in visual same-different decisions. Percept. Psychophys. 5, 197–200 (1969). - PubMed
  64. Herzog, M. H., Sayim, B., Chicherov, V. & Manassi, M. Crowding, grouping, and object recognition: A matter of appearance. J. Vis. 15(6), 1–18, https://doi.org/10.1167/15.6.5 (2015). - PubMed

Publication Types