Display options
Share it on

NPJ Breast Cancer. 2020 Jan 03;6:2. doi: 10.1038/s41523-019-0143-5. eCollection 2020.

Mutant P53 induces MELK expression by release of wild-type P53-dependent suppression of FOXM1.

NPJ breast cancer

Lakshmi Reddy Bollu, Jonathan Shepherd, Dekuang Zhao, Yanxia Ma, William Tahaney, Corey Speers, Abhijit Mazumdar, Gordon B Mills, Powel H Brown

Affiliations

  1. 1Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas USA.
  2. 2Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas USA.
  3. 3Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan USA.
  4. 4Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas USA.
  5. 5Present Address: Precision Oncology, OHSU Knight Cancer Institute, Oregon Health and Science University, 2720 Southwest Moody Avenue, Knight Cancer Research Building, Level 2, Portland, Oregon 97201 USA.

PMID: 31909186 PMCID: PMC6941974 DOI: 10.1038/s41523-019-0143-5

Abstract

Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, and is associated with a poor prognosis due to frequent distant metastasis and lack of effective targeted therapies. Previously, we identified maternal embryonic leucine zipper kinase (MELK) to be highly expressed in TNBCs as compared with ER-positive breast cancers. Here we determined the molecular mechanism by which MELK is overexpressed in TNBCs. Analysis of publicly available data sets revealed that MELK mRNA is elevated in p53-mutant breast cancers. Consistent with this observation, MELK protein levels are higher in p53-mutant vs. p53 wild-type breast cancer cells. Furthermore, inactivation of wild-type p53, by loss or mutation of the p53 gene, increases MELK expression, whereas overexpression of wild-type p53 in p53-null cells reduces MELK promoter activity and MELK expression. We further analyzed MELK expression in breast cancer data sets and compared that with known wild-type p53 target genes. This analysis revealed that MELK expression strongly correlates with genes known to be suppressed by wild-type p53. Promoter deletion studies identified a p53-responsive region within the MELK promoter that did not map to the p53 consensus response elements, but to a region containing a FOXM1-binding site. Consistent with this result, knockdown of FOXM1 reduced MELK expression in p53-mutant TNBC cells and expression of wild-type p53 reduced FOXM1 expression. ChIP assays demonstrated that expression of wild-type p53 reduces binding of E2F1 (a critical transcription factor controlling FOXM1 expression) to the FOXM1 promoter, thereby, reducing FOXM1 expression. These results show that wild-type p53 suppresses FOXM1 expression, and thus MELK expression, through indirect mechanisms. Overall, these studies demonstrate that wild-type p53 represses MELK expression by inhibiting E2F1A-dependent transcription of FOXM1 and that mutation-driven loss of wild-type p53, which frequently occurs in TNBCs, induces MELK expression by suppressing FOXM1 expression and activity in p53-mutant breast cancers.

© The Author(s) 2020.

Keywords: Breast cancer; Transcription

Conflict of interest statement

Competing interestsP.H.B. served as a Scientific Advisory Board Member for the Susan G. Komen for the Cure Foundation (until 2017) and is a holder of GeneTex stock (<1% of the total company stock); ne

References

  1. Breast Cancer Res. 2009;11(4):R60 - PubMed
  2. Mol Cancer Ther. 2013 May;12(5):759-67 - PubMed
  3. Biochem Biophys Res Commun. 2014 Apr 25;447(1):7-11 - PubMed
  4. Nature. 2008 Oct 23;455(7216):1069-75 - PubMed
  5. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14240-5 - PubMed
  6. World J Gastroenterol. 2016 Nov 21;22(43):9506-9514 - PubMed
  7. Elife. 2017 Sep 19;6: - PubMed
  8. Cell Cycle. 2013 Jun 1;12(11):1655-6 - PubMed
  9. Clin Cancer Res. 2009 Oct 15;15(20):6327-40 - PubMed
  10. Breast Cancer Res Treat. 2012 Apr;132(3):1049-62 - PubMed
  11. Nature. 2005 Jul 28;436(7050):518-24 - PubMed
  12. Cancer Res. 2006 Nov 1;66(21):10292-301 - PubMed
  13. Anticancer Res. 2016 Oct;36(10):5183-5188 - PubMed
  14. Mol Cancer Ther. 2014 Jun;13(6):1393-8 - PubMed
  15. Mol Cancer Ther. 2011 Jun;10(6):1046-58 - PubMed
  16. Nature. 2002 Jan 31;415(6871):530-6 - PubMed
  17. Oncogene. 2006 Apr 27;25(18):2685-96 - PubMed
  18. Nat Commun. 2016 May 10;7:11479 - PubMed
  19. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9810-5 - PubMed
  20. Biochim Biophys Acta. 2012 Jan;1819(1):28-37 - PubMed
  21. Cell Death Dis. 2014 Aug 07;5:e1360 - PubMed
  22. Mol Cell Biol. 2014 Sep;34(17):3229-43 - PubMed
  23. J Mol Endocrinol. 2013 Sep 10;51(2):R15-22 - PubMed
  24. Oncotarget. 2016 Apr 5;7(14):18171-82 - PubMed
  25. Nat Rev Mol Cell Biol. 2008 May;9(5):402-12 - PubMed
  26. Cancer Res. 2011 Jul 1;71(13):4329-33 - PubMed
  27. PLoS One. 2016 Apr 15;11(4):e0153518 - PubMed
  28. Cell. 2009 May 1;137(3):413-31 - PubMed
  29. Mol Cancer Ther. 2019 Mar;18(3):507-516 - PubMed
  30. Gynecol Oncol. 2017 Apr;145(1):159-166 - PubMed
  31. Nat Rev Cancer. 2008 Mar;8(3):242 - PubMed
  32. Nat Cell Biol. 2013 Jan;15(1):2-8 - PubMed
  33. Elife. 2018 Mar 12;7: - PubMed
  34. Oncotarget. 2016 Feb 2;7(5):6266-80 - PubMed
  35. Clin Cancer Res. 2007 Jun 1;13(11):3207-14 - PubMed
  36. Dev Dyn. 1999 Aug;215(4):344-51 - PubMed
  37. Expert Opin Ther Targets. 2017 Sep;21(9):849-859 - PubMed
  38. Biomark Insights. 2010 Nov 28;5:129-38 - PubMed
  39. Oncogene. 2009 Dec 3;28(48):4295-305 - PubMed
  40. Oncol Lett. 2018 Jun;15(6):9216-9230 - PubMed
  41. J Clin Oncol. 2009 Mar 10;27(8):1160-7 - PubMed
  42. Oncogene. 2011 May 12;30(19):2282-8 - PubMed
  43. Clin Cancer Res. 2016 Dec 1;22(23):5864-5875 - PubMed
  44. Mol Cancer Res. 2017 Sep;15(9):1275-1286 - PubMed
  45. Oncotarget. 2012 Dec;3(12):1629-40 - PubMed
  46. Mol Cancer. 2014 May 04;13:100 - PubMed
  47. Clin Cancer Res. 2008 Jul 15;14(14):4572-83 - PubMed
  48. Nat Rev Cancer. 2009 Nov;9(11):785-97 - PubMed
  49. Int J Mol Sci. 2013 Oct 31;14(11):21551-60 - PubMed
  50. Cancer Res. 2005 Nov 1;65(21):9751-61 - PubMed
  51. Cancer Lett. 2016 Dec 1;383(1):85-93 - PubMed
  52. J Biol Chem. 2004 Mar 5;279(10):8642-7 - PubMed
  53. Nature. 2012 Jul 12;487(7406):239-43 - PubMed
  54. Br J Cancer. 2017 Jul 25;117(3):409-420 - PubMed
  55. Stem Cell Reports. 2015 Feb 10;4(2):226-38 - PubMed
  56. Cancer Discov. 2014 Apr;4(4):405-14 - PubMed
  57. Oncotarget. 2014 Dec 15;5(23):12371-82 - PubMed
  58. Hum Mutat. 2007 Jun;28(6):622-9 - PubMed
  59. Clin Transl Med. 2015 Mar 07;4:11 - PubMed
  60. Oncogene. 2017 Jul 13;36(28):3943-3956 - PubMed
  61. Breast Cancer Res. 2009;11(1):R7 - PubMed
  62. iScience. 2018 Nov 30;9:149-160 - PubMed
  63. PLoS One. 2012;7(2):e31761 - PubMed
  64. Breast Cancer Res. 2007;9(1):R17 - PubMed
  65. Elife. 2018 Feb 08;7: - PubMed
  66. Elife. 2017 Mar 24;6: - PubMed
  67. Biochem Biophys Res Commun. 2011 Aug 26;412(2):207-13 - PubMed
  68. Clin Cancer Res. 2018 Nov 15;24(22):5645-5657 - PubMed
  69. Biol Chem. 2007 Dec;388(12):1257-74 - PubMed
  70. Nucleic Acids Res. 2013 Aug;41(15):7286-301 - PubMed
  71. Stem Cells. 2013 Jun;31(6):1051-63 - PubMed
  72. J Thorac Dis. 2016 Oct;8(10):E1367-E1368 - PubMed
  73. Biosci Rep. 2015 Oct 02;35(6):null - PubMed
  74. Bioorg Med Chem. 2017 May 1;25(9):2609-2616 - PubMed
  75. J Med Chem. 2016 May 26;59(10):4711-23 - PubMed
  76. Elife. 2014 May 20;3:e01763 - PubMed
  77. Oncotarget. 2017 Dec 20;9(2):2591-2602 - PubMed
  78. Mol Reprod Dev. 1997 Jun;47(2):148-56 - PubMed
  79. Cancer Res. 2008 Jul 1;68(13):5405-13 - PubMed
  80. Cancer Res. 2010 Nov 1;70(21):8863-73 - PubMed
  81. Blood Cancer J. 2016 Aug 19;6(8):e460 - PubMed
  82. Nature. 2012 Apr 18;486(7403):346-52 - PubMed
  83. Exp Cell Res. 2010 Aug 1;316(13):2166-73 - PubMed
  84. J Neurosci Res. 2008 Jan;86(1):48-60 - PubMed

Publication Types