Display options
Share it on

Cancers (Basel). 2020 Jan 23;12(2). doi: 10.3390/cancers12020279.

Metabolism of Estrogens: Turnover Differs Between Platinum-Sensitive and -Resistant High-Grade Serous Ovarian Cancer Cells.

Cancers

Stefan Poschner, Judith Wackerlig, Dan Cacsire Castillo-Tong, Andrea Wolf, Isabel von der Decken, Tea Lanišnik Rižner, Renata Pavlič, Anastasia Meshcheryakova, Diana Mechtcheriakova, Monika Fritzer-Szekeres, Theresia Thalhammer, Walter Jäger

Affiliations

  1. Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria.
  2. Division of Drug Design and Medicinal Chemistry, Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria.
  3. Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
  4. Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
  5. Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria.
  6. Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, 1090 Vienna, Austria.
  7. Vienna Metabolomics Center (VIME), University of Vienna, 1090 Vienna, Austria.

PMID: 31979221 PMCID: PMC7072378 DOI: 10.3390/cancers12020279

Abstract

High-grade serous ovarian cancer (HGSOC) is currently treated with cytoreductive surgery and platinum-based chemotherapy. The majority of patients show a primary response; however, many rapidly develop drug resistance. Antiestrogens have been studied as low toxic treatment options for HGSOC, with higher response rates in platinum-sensitive cases. Mechanisms for this difference in response remain unknown. Therefore, the present study investigated the impact of platinum resistance on steroid metabolism in six established HGSOC cell lines sensitive and resistant against carboplatin using a high-resolution mass spectrometry assay to simultaneously quantify the ten main steroids of the estrogenic metabolic pathway. An up to 60-fold higher formation of steroid hormones and their sulfated or glucuronidated metabolites was observed in carboplatin-sensitive cells, which was reversible by treatment with interleukin-6 (IL-6). Conversely, treatment of carboplatin-resistant cells expressing high levels of endogenous IL-6 with the monoclonal anti-IL-6R antibody tocilizumab changed their status to "platinum-sensitive", exhibiting a decreased IC

Keywords: LC-HRMS; carboplatin resistance; high-grade serous ovarian cancer; interleukin-6; metabolomics; steroid hormones

Conflict of interest statement

maximum reaction velocity

References

  1. Int J Gynecol Cancer. 2015 Feb;25(2):222-8 - PubMed
  2. Clin Cancer Res. 2010 Dec 1;16(23):5759-69 - PubMed
  3. Oncotarget. 2016 May 31;7(22):32810-20 - PubMed
  4. J Ovarian Res. 2016 Feb 15;9:5 - PubMed
  5. Eur J Pharm Sci. 2020 Feb 15;143:105151 - PubMed
  6. Oncol Lett. 2017 Jun;13(6):4047-4054 - PubMed
  7. Nihon Sanka Fujinka Gakkai Zasshi. 1981 Aug;33(8):1197-204 - PubMed
  8. Nature. 2019 May;569(7757):503-508 - PubMed
  9. Oncotarget. 2016 Oct 25;7(43):70803-70821 - PubMed
  10. J Steroid Biochem Mol Biol. 2015 Jun;150:54-63 - PubMed
  11. Cancer Lett. 2019 Sep 10;459:1-12 - PubMed
  12. Int J Cancer. 2014 Feb 1;134(3):530-41 - PubMed
  13. Gynecol Oncol. 2018 Jan;148(1):79-85 - PubMed
  14. Cancer Manag Res. 2018 Dec 05;10:6685-6693 - PubMed
  15. Gynecol Oncol. 2015 Jan;136(1):112-20 - PubMed
  16. Cytokine. 2012 May;58(2):133-47 - PubMed
  17. Curr Opin Obstet Gynecol. 2017 Feb;29(1):26-34 - PubMed
  18. J Gastroenterol Hepatol. 1998 Jan;13(1):88-94 - PubMed
  19. Gynecol Oncol. 2017 Dec;147(3):695-704 - PubMed
  20. Nat Rev Cancer. 2015 Nov;15(11):668-79 - PubMed
  21. Br J Cancer. 1997;76(7):829-35 - PubMed
  22. J Pharm Biomed Anal. 2017 May 10;138:344-350 - PubMed
  23. DNA Repair (Amst). 2018 Nov;71:172-176 - PubMed
  24. Ann Clin Biochem. 1994 Jan;31 ( Pt 1):65-71 - PubMed
  25. Clin Cancer Res. 2014 Apr 15;20(8):2192-204 - PubMed
  26. Altern Lab Anim. 2005 Dec;33(6):591-601 - PubMed
  27. Tumori. 2019 Feb;105(1):84-91 - PubMed
  28. Nat Rev Clin Oncol. 2018 Apr;15(4):234-248 - PubMed
  29. Endocr Rev. 1998 Oct;19(5):593-607 - PubMed
  30. Expert Opin Investig Drugs. 2016;25(5):597-611 - PubMed
  31. Cancer Res. 2014 Jul 15;74(14):3913-22 - PubMed
  32. Nat Rev Cancer. 2011 Sep 23;11(10):719-25 - PubMed
  33. Endocr Relat Cancer. 2000 Jun;7(2):85-93 - PubMed
  34. Methods Mol Biol. 2017;1652:3-35 - PubMed
  35. Ann Oncol. 2015 Oct;26(10):2141-9 - PubMed
  36. Nat Commun. 2013;4:2126 - PubMed
  37. Front Pharmacol. 2017 Nov 28;8:866 - PubMed
  38. Clin Cancer Res. 2011 Sep 15;17(18):6083-96 - PubMed
  39. Cancer Lett. 2010 Sep 1;295(1):110-23 - PubMed
  40. CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 - PubMed
  41. Gynecol Oncol. 2006 Mar;100(3):455-61 - PubMed
  42. AAPS J. 2019 Dec 20;22(1):16 - PubMed
  43. Cancer Metastasis Rev. 2012 Dec;31(3-4):713-32 - PubMed
  44. Int J Mol Sci. 2019 Aug 24;20(17): - PubMed
  45. Adv Bioinformatics. 2008;2008:420747 - PubMed
  46. Gynecol Oncol. 2019 Feb;152(2):278-285 - PubMed
  47. Cancer Lett. 2015 Jul 1;362(2):218-28 - PubMed
  48. Int J Gynecol Cancer. 2000 Jan;10(1):33-41 - PubMed
  49. Front Endocrinol (Lausanne). 2014 Nov 12;5:192 - PubMed
  50. Cold Spring Harb Perspect Med. 2017 Jan 3;7(1): - PubMed
  51. Rheumatol Int. 2012 Sep;32(9):2601-4 - PubMed
  52. Clin Cancer Res. 2017 Jul 15;23(14):3802-3812 - PubMed
  53. CA Cancer J Clin. 2018 Nov;68(6):394-424 - PubMed
  54. Ann Oncol. 2017 Apr 1;28(4):711-717 - PubMed
  55. Cancer Med. 2019 Jan;8(1):351-362 - PubMed
  56. Cancer Lett. 2008 Mar 18;261(2):172-82 - PubMed
  57. Gynecol Oncol. 2017 Sep;146(3):504-513 - PubMed
  58. Mod Pathol. 2017 Apr;30(4):563-576 - PubMed

Publication Types

Grant support