Display options
Share it on

Sci Rep. 2020 Jan 17;10(1):557. doi: 10.1038/s41598-019-57091-6.

Facile and efficient 3-chlorophenol sensor development based on photolumenescent core-shell CdSe/ZnS quantum dots.

Scientific reports

Mohammed M Rahman, Mohammad Rezaul Karim, M M Alam, M Badruz Zaman, Nabeel Alharthi, Hamad Alharbi, Abdullah M Asiri

Affiliations

  1. Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. [email protected].
  2. Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421 & K.A.CARE Energy Research and Innovation Center, Riyadh, 11451, Saudi Arabia. [email protected].
  3. Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh.
  4. Quality Engineering Test Establishment, Department of National Defence, Gatineau, QC, J8X 1C6, Canada.
  5. Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.
  6. Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

PMID: 31953448 PMCID: PMC6969177 DOI: 10.1038/s41598-019-57091-6

Abstract

Quantum dots (QDs) are semiconducting inorganic nanoparticles, tiny molecules of 2-10 nm sizes to strength the quantum confinements of electrons. The QDs are good enough to emit light onto electrons for exciting and returning to the ground state. Here, CdSe/ZnS core/shell QDs have been prepared and applied for electrochemical sensor development in this approach. Flat glassy carbon electrode (GCE) was coated with CdSe/ZnS QDs as very thin uniform layer to result of the selective and efficient sensor of 3-CP (3-chlorophenol). The significant analytical parameters were calculated from the calibration plot such as sensitivity (3.6392 µA µM

References

  1. Frasco, M. F. & Chaniotakis, N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9, 7266–86 (2009). - PubMed
  2. Kawasaki, H. Quantum dot-based fluorescent sensing. Anal. Sci. 33, 987–88 (2017). - PubMed
  3. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–46 (2005). - PubMed
  4. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–44 (2005). - PubMed
  5. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–16 (1998). - PubMed
  6. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–18 (1998). - PubMed
  7. Oxtoby, D. W. Nucleation of first-order phase transitions. Acc. Chem. Res. 31, 91–97 (1998). - PubMed
  8. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–62 (2002). - PubMed
  9. Wang, D., Rogach, A. L. & Carusao, F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett. 2, 857–61 (2002). - PubMed
  10. Gaponik, N. et al. Labeling of biocompatible polymer microcapsules with near-infrared emitting nanocrystals. Nano Lett. 3, 369–72 (2003). - PubMed
  11. Osaki, F., Kanamori, T., Sando, S., Sera, T. & Aoyama, Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520–21 (2004). - PubMed
  12. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotech. 22, 969–76 (2004). - PubMed
  13. Jose, R., Zhelev, Z., Bakalova, R., Baba, Y. & Ishikawa, M. White-light-emitting CdSe quantum dots synthesized at room temperature. Appl. Phys. Letts. 89, 13115 (2006). - PubMed
  14. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–57 (1994). - PubMed
  15. Schlamp, M. C., Peng, X. G. & Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837 (1997). - PubMed
  16. Mattoussi, H. et al. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 83, 7965 (1998). - PubMed
  17. Tessler, N., Medvedev, V., Kazes, M., Kan, S. H. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–8 (2002). - PubMed
  18. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–17 (2000). - PubMed
  19. Arakawa, Y., Nakamura, T. & Kwoen, J. Chapter three - Quantum dot lasers for silicon photonics. Semiconductors and Semimetals 101, 91–138 (2019). - PubMed
  20. Sun, B., Marx, E. & Greenham, N. C. Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 3, 961–63 (2003). - PubMed
  21. Huynh, W. U., Peng, X. & Alivisatos, A. P. CdSe nanocrystal rods/poly(3‐hexylthiophene) composite photovoltaic devices. Adv. Mat. 1999(11), 923–27 (1999). - PubMed
  22. Plass, R., Pelet, S., Krueger, J., Gratzel, M. & Bach, U. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578–80 (2002). - PubMed
  23. Pedrero, M., Campuzano, S. & Pingarrón, J. M. Electrochemical (bio)sensing of clinical markers using quantum dots. Electroanal. 29, 24–37 (2017). - PubMed
  24. Zaman, M. B., Karim, M. R., Ashrafuzzaman, M. & Pejman, H.-M. Biomolecule conjugated nanoparticle synthons for detection of food contaminants. Can. J. Chem. 93, 1–4 (2015). - PubMed
  25. Das, R. et al. Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. 46, 6946–7020 (2017). - PubMed
  26. Lin, J. H., Wu, Z. H. & Tseng, W. L. Extraction of environmental pollutants using magnetic nanomaterials. Anal. Methods 2, 1874–79 (2010). - PubMed
  27. Liu, Y., Su, G., Zhang, B., Jiang, G. & Yan, B. Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst 136, 872–77 (2011). - PubMed
  28. Khene, S. & Nyokong, T. Redox activity of CdTe quantum dots linked to nickel tetraaminophthalocyanine: Effects of adsorption versus electrodeposition on the catalytic oxidation of chlorophenols. Microchem. J. 99, 478–85 (2011). - PubMed
  29. Li, J. et al. A sensitive electrochemical chlorophenols sensor based on nanocomposite of ZnSe quantum dots and cetyltrimethylammonium bromide. Anal. Chim. Acta 804, 76–83 (2013). - PubMed
  30. Chen, M. et al. Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim. Acta 183, 1099–1106 (2016). - PubMed
  31. Wang, J., Liu, G. & Merkoҫi, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J. Am. Chem. Soc. 125, 3214–15 (2003). - PubMed
  32. Vijian, D., Chinni, S. V., Yin, L. S., Lertanantawong, B. & Surareungchai, W. Non-protein coding RNA-based genosensor with quantum dots as electrochemical labels for attomolar detection of multiple pathogens. Biosens. Bioelectron. 77, 805–11 (2016). - PubMed
  33. Michalowicz, J. & Duda, W. Phenols – Source and Toxicity. Pol. J. Environ. Stud. 16, 347–362 (2007). - PubMed
  34. Xu, X., Huixian, Z. & Jinqi, Z. Formation of strong mutagen [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] MX by chlorination of fractions of lake water. Water Res. 31, 1021–1026 (1997). - PubMed
  35. Subhan, M. A. et al. Fabrication of a 2,4-dinitrophenol sensor based on Fe - PubMed
  36. Ahmed, J., Rahman, M. M., Siddiquey, I. A., Asiri, A. M. & Hasnat, M. A. Efficient Bisphenol-A detection based on the ternary metal oxide (TMO) composites by electrochemical approaches. Electrochim. Acta 246, 597–605 (2017). - PubMed
  37. Yan, P. et al. Photoelectro-chemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites. Talanta 156, 257–264 (2016). - PubMed
  38. Ahlborg, U. G. & Thunberg, T. M. Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact. CRC Crit. Rev. Toxicol. 7, 1–35 (1980). - PubMed
  39. Rahman, M. M., Abu-Zied, B. M. & Asiri, A. M. Cu-loaded ZSM-5 zeolites: An ultra-sensitive phenolic sensor development for environmental safety. J. Indust. Engineering Chem. 61, 304–313 (2018). - PubMed
  40. Ecological Risk Assessment Branch (WH–585) and Human Risk Assessment Branch (WH-550D), Health and Ecological Criteria Division, USEPA, Washington, DC. (1991). - PubMed
  41. Lyon, B. A., Cory, R. M. & Weinberg, H. S. Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination. J. Hazard. Mater. 264, 411–419 (2014). - PubMed
  42. Dobaradaran, S. et al. Catalytic decomposition of 2-chlorophenol using an ultrasonic-assisted Fe - PubMed
  43. Khan, A. et al. Preparation and characterization of PANI@G/CWO nanocomposite for enhanced 2-nitrophenol sensing. Appl. Surf. Sci. 433, 696–704 (2017). - PubMed
  44. Chen, J. L., Ortiz, R., Xiao, Y., Steele, T. W. J. & Stuckey, D. C. Rapid fluorescence-based measurement of toxicity in anaerobic digestion. Water Res. 75, 123–130 (2015). - PubMed
  45. Jiang, X., Yang, M., Meng, Y., Jiang, W. & Zhan, J. Cysteamine-Modified Silver Nanoparticle Aggregates for Quantitative SERS Sensing of Pentachlorophenol with a Portable Raman Spectromete. ACS Appl. Mater. Inter. 5, 6902–6908 (2013). - PubMed
  46. Ma, Q. et al. Surface-enhanced Raman scattering substrate based on cysteamine-modified gold nanoparticle aggregation for highly sensitive pentachlorophenol detection. RCS Adv. 6, 85285–85292 (2016). - PubMed
  47. Sun, G. et al. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosens. Bioelectron. 56, 97–103 (2014). - PubMed
  48. Rahman, M. M., Sheikh, T. A., Asiri, A. M. & Awual, M. R. Development of 3-methoxyanaline sensor probe based on thin Ag - PubMed
  49. Rahman, M. M., Hussain, M. M. & Asiri, A. M. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses. PlOS One 12, e0177817 (2017). - PubMed
  50. Alam, M. K. et al. Highly sensitive and selective detection of bisphenol A based on reduced graphene oxide decorated hydroxyapatite nanocomposites. Electrochimica Acta 214, 353–361 (2017). - PubMed
  51. Czech, T. et al. Fast analysis of 4-tertoctylphenol, pentachlorophenol and 4-nonylphenol in river sediments by QuEChERS extraction procedure combined with GC-QqQ-MS/MS. Sci. Total Environ. 557, 681–687 (2016). - PubMed
  52. Fan, C., Li, N. & Cao, X. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid–liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chem. 174, 446–451 (2015). - PubMed
  53. Li, J. et al. Electrogenerated chemiluminescence detection of trace level pentachlorophenol using carbon quantum dots. Analyst 138, 2038–2043 (2013). - PubMed
  54. Liang, J., Yang, S., Luo, S., Liu, C. & Tang, Y. Ultrasensitive electrochemiluminescent detection of pentachlorophenol using a multiple amplification strategy based on a hybrid material made from quantum dots, graphene, and carbon nanotubes. Microchim. Acta. 181, 759–765 (2014). - PubMed
  55. Sun, G. et al. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosens. Bioelectron. 56, 97–103 (2014). - PubMed
  56. Xu, H., Zhang, X. & Zhan, J. Determination of pentachlorophenol at carbon nanotubes modified electrode incorporated with beta-cyclodextrin. J. Nanosci. Nanotechnol. 10, 7654–7657 (2010). - PubMed
  57. Xu, J., Wang, Y., Qiu, H. & Zhang, Y. The electrochemical oxidation of pentachlorophenol and its sensitive determination at chitosan modified carbon paste electrode. Russ. J. Electrochem. 50, 531–536 (2014). - PubMed
  58. Remes, A., Pop, A., Manea, F., Baciu, A. & Picken, S. J. J. Schoonman, Electrochemical Determination of Pentachlorophenol in Water on a Multi-Wall Carbon Nanotubes-Epoxy Composite Electrode. Sensors. 12, 7033–7046 (2012). - PubMed
  59. Yuan, S., Peng, D., Hu, X. & Gong, J. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly. Anal. Chim. Acta 785, 34–42 (2013). - PubMed
  60. Zou, J. et al. Electrochemical Determination of Pentachlorophenol Using a Glassy Carbon Electrode Modified with a Film of CuS Nanocomposite -Chitosan. Anal. Lett. 46, 1108–1116 (2013). - PubMed
  61. Rahman, M. M., Alam, M. M. & Asiri, A. M. Sensitive 1,2-dichlorobenzene chemi-sensor development based on solvothermally prepared FeO/CdO nanocubes for environmental safety. J. Indust. Engineer. Chem. 62, 392–400 (2018). - PubMed
  62. Rahman, M. M., Alam, M. M. & Asiri, A. M. 2-Nitrophenol sensor-based wet-chemically prepared binary doped Co - PubMed
  63. Rahman, M. M., Alam, M. M., Asiri, A. M. & Islam, M. A. 3,4-Diaminotoluene sensor development based on hydrothermally prepared MnCoxOy nanoparticles. Talanta 176, 17–25 (2018). - PubMed
  64. Rahman, M. M., Alam, M. M., Asiri, A. M. & Awual, M. R. Fabrication of 4-aminophenol sensor based on hydrothermally prepared ZnO/Yb - PubMed
  65. Verma, R. & Gupta, B. D. Fiber optic SPR sensor for the detection of 3-pyridinecarboxamide (vitamin B - PubMed
  66. Ratcliffe, C. I. et al. Solid state NMR studies of photoluminescent cadmium chalcogenide nanoparticles. Phys. Chem. Chem. Phys. 8, 3510–19 (2006). - PubMed
  67. Aldana, J., Wang, Y. A. & Peng, X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844–50 (2001). - PubMed
  68. Yu, W. W., Qu, L. H., Guo, W. Z. & Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003). - PubMed
  69. Li, J. J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–75 (2003). - PubMed
  70. Yu, K., Zaman, M. B., Singh, S., Wang, D. & Ripmeester, J. A. The effect of dispersion media on photoluminescence of colloidal CdSe nanocrystals synthesized from TOP. Chem. Mater. 17, 2552–61 (2005). - PubMed
  71. Peng, Z. A. & Peng, X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc. 123, 183–84 (2001). - PubMed
  72. Ren, S. et al. Surface modification of sulfonated poly(ether ether ketone) membranes using nafion solution for direct methanol fuel cells. J. Membrane Sci. 247, 59–63 (2005). - PubMed
  73. Wang, Z., Liu, G., Zhang, L. & Wang, H. Electrochemical detection of trace cadmium in soil using a Nafion/stannum film-modified molecular wire carbon paste electrodes. Ionics 19, 1687–1693 (2013). - PubMed
  74. Subhan, M. A. et al. Efficient selective 4-aminophenol sensing and antibacterial activity of ternary Ag - PubMed
  75. Wahid, A., Asiri, A. M. & Rahman, M. M. One-step facile synthesis of Nd2O3/ZnO nanorods for an efficient selective 2,4-dinitrophenol sensor probe. Appl. Surf. Sci. 487, 1253–1261 (2019). - PubMed
  76. Ahmed, J. et al. Electrocatalytic oxidation of 4-aminophenol molecules at FeS2-CNT immobilized GCE surface in aqueous medium. ChemPlusChem 84, 175–182 (2019). - PubMed
  77. Rahman, M. M., Alam, M. M. & Asiri, A. M. Efficient phenolic sensor development based on facile Ag2O/Sb2O3 nanoparticles for environmental safety. Nanoscale Adv. 1, 696–705 (2019). - PubMed
  78. Rahman, M. M. & Ahmed, J. Cd-doped Sb - PubMed
  79. Duan, X., Zhao, C., Liu, W., Zhao, X. & Chang, L. Fabrication of a novel PbO - PubMed
  80. Rahman, M. M., Fabregat, F., Guerrero, A., Asiri, A. M. & Bisquert, J. Semiconductor α-Fe2O3 hematite fabricated electrode for sensitive detection of Phenolic pollutants. ChemistrySelect 3, 12169–12174 (2018). - PubMed
  81. Sheikh, T. A., Rahman, M. M., Asiri, A. M. & Marwani, H. M. Sensitive 3-chlorophenol sensor development based on facile Er - PubMed
  82. Ozoner, S. K., Yilmaz, F., Celik, A., Keskinler, B. & Erhan, E. A novel poly(glycine methacrylate-co-3-thienylmethyl methacrylate)-polypyrrole-carbon nanotube-horseradish peroxidase composite film electrode for the detection of phenolic compounds. Curr. Appl. Phys. 11, 402–408 (2011). - PubMed
  83. Korkut, S., Keskinler, B. & Erhan, E. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta 76, 1147–1152 (2008). - PubMed
  84. Campuzano, S., Serra, B., Pedrero, M. A., Villena, F. J. M. D. & Pingarrón, J. M. Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors. Anal. Chim. Acta. 494, 187 (2003). - PubMed
  85. Wei, M. et al. β-Cyclodextrin functionalized graphene material: A novel electrochemical sensor for simultaneous determination of 2-chlorophenol and 3-chlorophenol. Sens. Actuat. B. Chem. 195, 452–458 (2014). - PubMed
  86. Sheikh, T. A., Rahman, M. M., Asiri, A. M. & Marwani, H. M. Sensitive 3-chlorophenol sensor development based on facile Er - PubMed

Publication Types

Grant support