Display options
Share it on

ACS Omega. 2020 Jan 15;5(3):1679-1687. doi: 10.1021/acsomega.9b03776. eCollection 2020 Jan 28.

DNA Structural Changes Induced by Intermolecular Triple Helix Formation.

ACS omega

Ibrahim Sayoh, David A Rusling, Tom Brown, Keith R Fox

Affiliations

  1. School of Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, U.K.
  2. Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.

PMID: 32010842 PMCID: PMC6990630 DOI: 10.1021/acsomega.9b03776

Abstract

DNase I footprints of intermolecular DNA triplexes are often accompanied by enhanced cleavage at the 3'-end of the target site at the triplex-duplex junction. We have systematically studied the sequence dependence of this effect by examining oligonucleotide binding to sites flanked by each base in turn. For complexes with a terminal T.AT triplet, the greatest enhancement is seen with ApC, followed by ApG and ApT, with the weakest enhancement at ApA. Similar DNase I enhancements were observed for a triplex with a terminal C

Copyright © 2020 American Chemical Society.

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. J Mol Biol. 1996 May 31;259(1):95-103 - PubMed
  2. Curr Med Chem. 2000 Jan;7(1):17-37 - PubMed
  3. Eur J Biochem. 1999 Mar;260(3):801-9 - PubMed
  4. FEBS Lett. 1988 Apr 11;231(1):172-6 - PubMed
  5. Biochemistry. 1999 Dec 21;38(51):16810-5 - PubMed
  6. Chem Commun (Camb). 2016 Jun 28;52(51):8014-7 - PubMed
  7. Nucleic Acids Res. 1994 Jun 11;22(11):2016-21 - PubMed
  8. Biophys Chem. 2009 Dec;145(2-3):105-10 - PubMed
  9. Nucleic Acids Res. 1999 Apr 15;27(8):1802-9 - PubMed
  10. Nature. 1986 Jun 5-11;321(6070):620-5 - PubMed
  11. Biochemistry. 1991 Sep 17;30(37):9022-30 - PubMed
  12. Nucleic Acids Res. 1984 Jun 25;12(12):4865-79 - PubMed
  13. J Mol Biol. 1984 Jul 15;176(4):535-57 - PubMed
  14. Biochemistry. 2001 Aug 7;40(31):9396-405 - PubMed
  15. Nucleic Acids Res. 1984 Dec 21;12(24):9271-85 - PubMed
  16. J Mol Biol. 2010 Jan 8;395(1):123-33 - PubMed
  17. Science. 1987 Oct 30;238(4827):645-50 - PubMed
  18. Biochemistry. 1992 Feb 4;31(4):1058-64 - PubMed
  19. Nucleic Acids Res. 1987 Oct 12;15(19):7749-60 - PubMed
  20. Biochemistry. 1992 Jan 14;31(1):70-81 - PubMed
  21. Nature. 1990 Mar 22;344(6264):358-60 - PubMed
  22. Biochemistry. 2002 Jun 11;41(23):7224-31 - PubMed
  23. Nature. 1988 Mar 31;332(6163):464-8 - PubMed
  24. Nucleic Acids Res. 2005 May 23;33(9):3025-32 - PubMed
  25. Biochim Biophys Acta. 1994 Aug 2;1218(3):322-30 - PubMed
  26. Biochemistry. 1989 Sep 5;28(18):7282-9 - PubMed
  27. Nature. 1995 Apr 20;374(6524):742-4 - PubMed
  28. Biochemistry. 1998 Nov 17;37(46):16139-51 - PubMed
  29. Nucleic Acids Res. 2012 Apr;40(8):3753-62 - PubMed
  30. J Mol Biol. 1994 Aug 26;241(4):600-19 - PubMed
  31. Methods. 2007 Jun;42(2):128-40 - PubMed
  32. Nucleic Acids Res. 1991 Aug 11;19(15):4219-24 - PubMed
  33. Nucleic Acids Res. 2003 Oct 1;31(19):5598-606 - PubMed
  34. Philos Trans A Math Phys Eng Sci. 2004 Jul 15;362(1820):1423-38 - PubMed
  35. Oligonucleotides. 2003;13(6):515-37 - PubMed
  36. Cell. 1984 Jun;37(2):491-502 - PubMed
  37. Science. 1991 Mar 15;251(4999):1360-3 - PubMed
  38. Nucleic Acids Res. 1993 Feb 11;21(3):585-91 - PubMed
  39. Biochemistry. 1994 Dec 27;33(51):15338-47 - PubMed
  40. FEBS Lett. 1993 Oct 11;332(1-2):189-92 - PubMed
  41. Nucleic Acids Res. 1988 Dec 23;16(24):11431-40 - PubMed
  42. Biochemistry. 1994 Sep 27;33(38):11405-16 - PubMed
  43. J Mol Biol. 1991 Dec 5;222(3):645-67 - PubMed
  44. Structure. 1999 Jan 15;7(1):1-11 - PubMed
  45. J Biol Chem. 1990 Jun 25;265(18):10652-8 - PubMed
  46. J Mol Biol. 1998 Feb 6;275(5):811-22 - PubMed
  47. Nucleic Acids Res. 2002 May 1;30(9):e39 - PubMed

Publication Types