Display options
Share it on

Microsc Res Tech. 2020 Jun;83(6):618-626. doi: 10.1002/jemt.23452. Epub 2020 Feb 03.

Microscopic approach to micromechanism of damage in spheroidal cast iron.

Microscopy research and technique

Małgorzata Warmuzek, Adelajda Polkowska, Andrzej Gazda

Affiliations

  1. Materials Testing Laboratory, ?ukasiewicz Research Network-Foundry Research Institute, Kraków, Poland.

PMID: 32011056 DOI: 10.1002/jemt.23452

Abstract

In this work, the observations of the fracture surface after standard tensile tests of several kinds of spheroidal cast irons, ferritic and austempered ductile irons, have been carried out by means of scanning electron microscopy. The local crack path in the area of graphite (G)/matrix (M) interface has been analyzed as affected by a matrix phase composition and the austempering treatment parameters. The obtained results allowed identifying some determination factors for debonding mode at the G/M interface and their role in a final damage mechanism. Some microstructural details in the microregions composed of graphite and matrix showed that the G-M debonding mode in the separation area of the G/M interface seems to be controlled by macroscopic properties of the alloy and by the morphology of G/M interface. On the other hand, the internal destruction of graphite nodule has been mainly determined by a structure and anisotropy of graphite crystal lattice.

© 2020 Wiley Periodicals, Inc.

Keywords: characterization; electron microscopy; fracture behavior; iron alloys

References

  1. Andriollo, T., & Hattel, J. (2016). On the isotropic constants of graphite nodules in ductile cast iron: Analytical and micromechanical investigations. Mechanics of Materials, 96, 138-150. https://doi.org/10.1016/j.mechmat.2016.02.007 - PubMed
  2. Andriollo, T., Thorborg, J., Tiedje, N., & Hattel, J. (2016). A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules, modelling simulation. Materials Science and Engineering, 24, 055012. - PubMed
  3. Andriollo, T., Thorborg, J., Tiedje, N. S., & Hattel, J. (2015). Modeling of damage in ductile cast iron-The effect of including plasticity in the graphite nodules. Materials Science and Engineering, 84, 012027. - PubMed
  4. Azizi, R. (2012). Micromechanical modeling of damage in periodic composites using strain gradient plasticity. Engineering Fracture Mechanics, 92, 101-113. - PubMed
  5. Bonora, N., & Ruggiero, A. (2005). Micromechanical modeling of ductile cast iron incorporating damage. Part I: Ferritic ductile cast iron. International Journal of Solids and Structures, 42, 1401-1424. https://doi.org/10.1016/j.ijsolstr.2004.07.025 - PubMed
  6. Chawla, V., Batra, U., Puri, D., & Chawla, A. (2008). To study the effect of austempering temperature on fracture behaviour of Ni-Mo austempered ductile iron (ADI). Journal of Minerals and Materials Characterization and Engineering, 7, 307-316. https://doi.org/10.4236/jmmce.2008.74024 - PubMed
  7. Cooper, C. A., Elliott, R., & Young, R. J. (2002). Investigation of elastic property relationships for flake and spheroidal cast irons using Raman spectroscopy. Acta Materialia, 50, 4037-4046. https://doi.org/10.1016/S1359-6454(02)00202-1 - PubMed
  8. D'Agostino, L., Di Cocco, V., Fernandino, D. O., & Iacoviello, F. (2017). Damaging micromechanisms in an as cast ferritic and a ferritized ductile cast iron. Procedia Structural Integrity, 3, 201-207. - PubMed
  9. Dai, P. Q., He, Z. R., Zheng, C. M., & Mao, Z. Y. (2001). In-situ sem observation on the fracture of austempered ductile iron. Materials Science and Engineering A, 319, 531-534. https://doi.org/10.1016/S0921-5093(01)01088-7 - PubMed
  10. Di Cocco, V., Iacoviello, F., & Cavallini, M. (2010). Damaging micromechanism characterization of a ferritic ductile cast iron. Engineering Fracture Mechanics, 77, 2016-2023. https://doi.org/10.3221/IGF-ESIS.30.09 - PubMed
  11. Di Cocco, V., Iacoviello, F., Rossi, A., & Iacoviello, D. (2014). Macro- and microscopical approach to the damaging micromechanisms analysis in a ferritic ductile cast iron. Theoretical and Applied Fracture Mechanics, 69, 26-33. https://doi.org/10.1016/j.tafmec.2013.11.003 - PubMed
  12. Dierickx, P., Verdu, C., Reynaud, A., & Fougeres, R. (1996). A study of physico-chemical mechanisms responsible for damage of heat-treated and as-cast ferritic spheroidal graphite cast irons. Scripta Materialia, 34, 261-268. https://doi.org/10.1016/1359-6462(95)00496-3 - PubMed
  13. Dong, M. J., & Prioul, C. (1997). Damage effect on the fracture toughness of nodular cast iron: Part I. Damage characterization and plastic flow stress modelling. Metallurgical and Materials Transactions A, 28(A), 2245-2254. - PubMed
  14. Fatahalla, N., & Hussein, O. (2015). Microstructure, mechanical properties, toughness, wear characteristics and fracture phenomena of austenitised and austempered low-alloyed ductile iron. Open Access Library Journal, 02, 1-16. - PubMed
  15. Fernandes, G. R., Silva, M. J. M., Vieira, J. F., & Pituba, J. J. C. (2019). A. 2D RVE formulation by the boundary element method considering phase debonding. Engineering Analysis with Boundary Elements, 104, 259-276. - PubMed
  16. Fukumasu, N. K., Pelegrino, P. L., Cueva, G., Souza, R. M., & Sinatora, A. (2005). Numerical analysis of the stresses developed during the sliding of a cylinder over compact graphite iron. Wear, 259, 1400-1407. https://doi.org/10.1016/j.wear.2005.01.014 - PubMed
  17. Gaudig, W., Mellert, R., Weber, U., & Schmauder, S. (2003). Self-consistent one-particle 3D unit cell model for simulation of the effect of graphite aspect ratio on Young's modulus of cast-iron. Computational Materials Science, 28, 654-662. https://doi.org/10.1016/j.commatsci.2003.08.021 - PubMed
  18. Gazda, A., Warmuzek, M., & Bitka, A. (2018). Optimization of mechanical properties of complex, two-stage heat treatment of Cu-Ni (Mn, Mo) austempered ductile iron. Journal of Thermal Analysis and Calorimetry, 132, 813-822. https://doi.org/10.1007/s10973-018-7004-6 - PubMed
  19. Ghassemali, E., Hernando, J. C., Stefanescu, D. M., Dioszegi, A., Jarfors, A. E. W., Dluhoš, J., & Petrenec, M. (2019). Revisiting the graphite nodule in ductile iron. Scripta Materialia, 161, 66-69. https://doi.org/10.1016/j.scriptamat.2018.10.018 - PubMed
  20. Hervas, I., Thuault, A., & Hug, E. (2015). Damage analysis of a ferritic SiMo ductile cast iron submitted to tension and compression loadings in temperature. Metals, 5, 2351-2369. https://doi.org/10.3390/met5042351 - PubMed
  21. Iacoviello, F., & Di Cocco, V. (2016). Influence of the graphite elements morphology on the fatigue crack propagation mechanisms in a ferritic ductile cast iron. Engineering Fracture Mechanics, 167, 248-258. https://doi.org/10.1016/j.engfracmech.2016.03.041 - PubMed
  22. Iacoviello, F., Di Bartolomeo, O., Di Cocco, V., & Piacente, V. (2008). Damaging micromechanism in ferritic-pearlitic ductile cast irons. Materials Science and Engineering A, 478, 181-186. https://doi.org/10.1016/j.msea.2007.05.110 - PubMed
  23. Iacoviello, F., di Cocco, V., Rossi, A., & Cavallini, M. (2014). Damaging micromechanism characterization in pearlitic ductile cast irons. Procedia Materials Science, 3, 295-300. - PubMed
  24. Martínez, R. A. (2010). Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing. Engineering Fracture Mechanics, 77, 2749-2762. - PubMed
  25. Monchoux, J. P., Verdu, C., Thollet, G., Fougeres, R., & Reynaud, A. (2001). Morphological changes of graphite spheroids during heat treatment of ductile cast irons. Acta Materialia, 49, 4355-4362. https://doi.org/10.1016/S1359-6454(01)00230-0 - PubMed
  26. Pina, J. C., Kouznetsova, V. G., & Geers, M. G. D. (2015). Thermo-mechanical analyses of heterogeneous materials with a strongly anisotropic phase: The case of cast iron. International Journal of Solids and Structures, 63, 153-166. https://doi.org/10.1016/j.ijsolstr.2015.02.048 - PubMed
  27. Qing, J., Richards, V. L., & van Aken, D. C. (2017). Growth stages and hexagonal rhombohedral structural arrangements in spheroidal graphite observed in ductile iron. Carbon, 116, 456-469. https://doi.org/10.1016/j.carbon.2017.01.063 - PubMed
  28. Sfantos, G. K., & Aliabadi, M. H. (2007). Multi-scale boundary element modelling of material degradation and fracture. Computer Methods in Applied Mechanics and Engineering., 196, 1310-1329. - PubMed
  29. Stefanescu, D. M., Alonso, G., Larranaga, P., de la Fuente, E., & Suarez, R. (2016). On the crystallization of graphite from liquid irone-carbone-silicon melts. Acta Materialia, 107, 102-126. https://doi.org/10.1016/j.actamat.2016.01.047 - PubMed
  30. Theuwissen, K., Lacaze, J., & Laffont, L. (2016). Structure of graphite precipitates in cast iron. Carbon, 96, 1120-1128. https://doi.org/10.1016/j.carbon.2015.10.066 - PubMed
  31. Toro, S., Sánchez, P. J., Blanco, P. J., de Souza Neto, E. A., Huespe, A. E., & Feijóo, R. A. (2015). Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales. International Journal of Plasticity., 76, 75-110. https://doi.org/10.1016/j.ijplas.2015.07.001 - PubMed
  32. Warmuzek, M., & Polkowska, A. (2018). Chemical composition of chosen phase constituents in austempered ductile cast iron. Materials Testing, 60, 691-699. https://doi.org/10.3139/120.111205 - PubMed
  33. Warmuzek, M. (2004). Aluminum-silicon casting alloys. Atlas of microfractographs. Materials Park, OH: ASM International. - PubMed
  34. Zhang, Y. B., Andriollo, T., Faester, S., Liu, W., Hattel, J., & Barabash, R. (2016). 3D local residual stress and orientation gradients near graphite nodules in ductile cast iron. Acta Materialia, 121, 173-180. https://doi.org/10.1016/j.actamat.2016.09.009 - PubMed

Publication Types

Grant support