Display options
Share it on

Optica. 2019 Jan 20;6(1):76-83. doi: 10.1364/optica.6.000076.

Scanless volumetric imaging by selective access multifocal multiphoton microscopy.

Optica

Yi Xue, Kalen P Berry, Josiah R Boivin, Christopher J Rowlands, Yu Takiguchi, Elly Nedivi, Peter T C So

Affiliations

  1. Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.
  2. Laser Biomedical Research Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.
  3. Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.
  4. Picower Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.
  5. Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.
  6. Hamamatsu Photonics K.K., Hamamatsu, Japan.
  7. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.

PMID: 31984218 PMCID: PMC6980307 DOI: 10.1364/optica.6.000076

Abstract

Simultaneous, high-resolution imaging across a large number of synaptic and dendritic sites is critical for understanding how neurons receive and integrate signals. Yet, functional imaging that targets a large number of submicrometer-sized synaptic and dendritic locations poses significant technical challenges. We demonstrate a new parallelized approach to address such questions, increasing the signal-to-noise ratio by an order of magnitude compared to previous approaches. This selective access multifocal multiphoton microscopy uses a spatial light modulator to generate multifocal excitation in three dimensions (3D) and a Gaussian-Laguerre phase plate to simultaneously detect fluorescence from these spots throughout the volume. We test the performance of this system by simultaneously recording Ca

References

  1. Nat Methods. 2016 Dec;13(12):1021-1028 - PubMed
  2. Nat Methods. 2014 Jul;11(7):727-730 - PubMed
  3. Front Neural Circuits. 2008 Dec 19;2:5 - PubMed
  4. Nat Methods. 2005 Dec;2(12):932-40 - PubMed
  5. Neuron. 2016 Jan 20;89(2):269-84 - PubMed
  6. Nat Methods. 2016 Dec;13(12):1001-1004 - PubMed
  7. Nature. 2011 Jun 26;475(7357):501-5 - PubMed
  8. Nat Commun. 2014 Jun 05;5:3997 - PubMed
  9. Opt Express. 2005 Mar 21;13(6):2153-9 - PubMed
  10. Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13138-43 - PubMed
  11. J Microsc. 2000 Nov;200(Pt 2):83-104 - PubMed
  12. Opt Lett. 2005 Jul 1;30(13):1686-8 - PubMed
  13. J Neurosci Methods. 1994 Oct;54(2):151-62 - PubMed
  14. Nat Neurosci. 2008 Jun;11(6):713-20 - PubMed
  15. Nat Neurosci. 2015 Dec;18(12):1713-21 - PubMed
  16. Nat Methods. 2012 Jan 08;9(2):201-8 - PubMed
  17. Opt Lett. 2014 Mar 15;39(6):1621-4 - PubMed
  18. Cereb Cortex. 2006 Jul;16(7):990-1001 - PubMed
  19. Nat Methods. 2011 Feb;8(2):139-42 - PubMed
  20. Annu Rev Biomed Eng. 2000;2:399-429 - PubMed
  21. Opt Lett. 2009 Aug 15;34(16):2495-7 - PubMed
  22. Nature. 2013 Jul 18;499(7458):295-300 - PubMed
  23. eNeuro. 2015 Jan 02;2(1):null - PubMed
  24. J Biomed Opt. 2004 Nov-Dec;9(6):1265-70 - PubMed
  25. Nat Neurosci. 2017 Apr;20(4):620-628 - PubMed
  26. Front Neural Circuits. 2014 Apr 03;8:29 - PubMed
  27. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):2995-9 - PubMed
  28. Elife. 2017 Sep 20;6: - PubMed
  29. Proc IEEE Inst Electr Electron Eng. 2014 May;102(5):null - PubMed
  30. Neuron. 2006 Jun 15;50(6):823-39 - PubMed
  31. Opt Lett. 1998;23(9):655-7 - PubMed
  32. Prog Neurobiol. 1992 Dec;39(6):563-607 - PubMed
  33. J Biomed Opt. 2005 Jul-Aug;10(4):44015 - PubMed
  34. Opt Express. 2007 Aug 20;15(17):10991-8 - PubMed
  35. Nature. 1995 Jun 22;375(6533):682-4 - PubMed
  36. Biomed Opt Express. 2018 Oct 22;9(11):5654-5666 - PubMed
  37. Nat Methods. 2010 Oct;7(10):848-54 - PubMed

Publication Types

Grant support