Display options
Share it on

Chempluschem. 2017 Nov;82(11):1341-1350. doi: 10.1002/cplu.201700400.

Three-Dimensional Network Structures Based on Pyridyl-Calix[4]Arene Metal Complexes.

ChemPlusChem

Carmelo Sgarlata, Giovanna Brancatelli, Cosimo G Fortuna, Domenico Sciotto, Silvano Geremia, Carmela Bonaccorso

Affiliations

  1. Dipartimento di Scienze Chimiche, Università di Catania, viale A. Doria 6, 95125, Catania, Italy.
  2. Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via L. Giorgieri 1, 34127, Trieste, Italy.

PMID: 31957183 DOI: 10.1002/cplu.201700400

Abstract

A new series of supramolecular assemblies is obtained through the interaction of 3-pyridylmethyl-calixarenes and copper or zinc ions. The complexes formed are characterized both in solution and in the solid state. The results offer appealing insights into how the steric crowding of the lower rim and different coordination modes of the metal centers have a great impact on the overall architecture of the complexes with the formation of monomeric, dimeric, or oligomeric/polymeric species.

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: calixarenes; metal-directed assemblies; self-assembly; solid-state structures; titrations

References

  1. W. Wang, Y.-X. Wang, H.-B. Yang, Chem. Soc. Rev. 2016, 45, 2656-2693. - PubMed
  2. M. D. Ward, P. R. Raithby, Chem. Soc. Rev. 2013, 42, 1619-1636. - PubMed
  3. T. R. Cook, Y.-R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734-777. - PubMed
  4. M. M. J. Smulders, I. A. Riddell, C. Browne, J. R. Nitschke, Chem. Soc. Rev. 2013, 42, 1728-1754. - PubMed
  5. S. J. Dalgarno, N. P. Power, J. L. Atwood, Coord. Chem. Rev. 2008, 252, 825-841. - PubMed
  6. J.-N. Rebilly, B. Colasson, O. Bistri, D. Over, O. Reinaud, Chem. Soc. Rev. 2015, 44, 467-489. - PubMed
  7. L. F. Lindoy, K.-M. Park, S. S. Lee, Chem. Soc. Rev. 2013, 42, 1713-1727. - PubMed
  8. C. D. Gutsche, Acc. Chem. Res. 1983, 16, 161-170. - PubMed
  9. C. D. Gutsche, Calixarenes, Royal Society Of Chemistry, Cambridge, 2008. - PubMed
  10. S. Fernández-Abad, M. Pêssego, N. Basílio, L. García-Río, Chem. Eur. J. 2016, 22, 6466-6470. - PubMed
  11. X. Ma, Y. Zhao, Chem. Rev. 2015, 115, 7794-7839. - PubMed
  12. G. Delahousse, R. Lavendomme, I. Jabin, V. Agasse, P. Cardinael, Curr. Org. Chem. 2015, 19, 2237-2249. - PubMed
  13. M. Giuliani, I. Morbioli, F. Sansone, A. Casnati, Chem. Commun. 2015, 51, 14140-14159. - PubMed
  14. S. B. Nimse, T. Kim, Chem. Soc. Rev. 2013, 42, 366-386. - PubMed
  15. C. Bonaccorso, A. Ciadamidaro, V. Zito, C. Sgarlata, D. Sciotto, G. Arena, Thermochim. Acta 2012, 530, 107-115. - PubMed
  16. C. Sgarlata, C. Bonaccorso, F. G. Gulino, V. Zito, G. Arena, D. Sciotto, Tetrahedron Lett. 2009, 50, 1610-1613. - PubMed
  17. A. Díaz-Moscoso, F. A. Arroyave, P. Ballester, Chem. Commun. 2016, 52, 3046-3049. - PubMed
  18. D. O. Demirkol, H. B. Yildiz, S. Sayın, M. Yilmaz, RSC Adv. 2014, 4, 19900-19907. - PubMed
  19. C. Bonaccorso, G. Brancatelli, G. Forte, G. Arena, S. Geremia, D. Sciotto, C. Sgarlata, RSC Adv. 2014, 4, 53575-53587. - PubMed
  20. G. Brancatelli, R. De Zorzi, N. Hickey, P. Siega, G. Zingone, S. Geremia, Cryst. Growth Des. 2012, 12, 5111-5117. - PubMed
  21. C. Escudero, A. D′Urso, R. Lauceri, C. Bonaccorso, D. Sciotto, S. Di Bella, Z. El-Hachemi, J. Crusats, J. M. Ribò, R. Purrello, J. Porphyrins Phthalocyanines 2010, 14, 708-712. - PubMed
  22. R. Salvio, S. Volpi, R. Cacciapaglia, F. Sansone, L. Mandolini, A. Casnati, J. Org. Chem. 2016, 81, 9012-9019. - PubMed
  23. C. Redshaw, Dalton Trans. 2016, 45, 9018-9030. - PubMed
  24. M. De Rosa, P. La Manna, A. Soriente, C. Gaeta, C. Talotta, P. Neri, RSC Adv. 2016, 6, 91846-91851. - PubMed
  25. A. Karpus, O. Yesypenko, V. Boiko, R. Poli, J.-C. Daran, Z. Voitenko, V. Kalchenko, E. Manoury, Eur. J. Org. Chem. 2016, 3386-3394. - PubMed
  26. S. Meninno, A. Parrella, G. Brancatelli, S. Geremia, C. Gaeta, C. Talotta, P. Neri, A. Lattanzi, Org. Lett. 2015, 17, 5100-5103. - PubMed
  27. C. Bonaccorso, G. Brancatelli, F. P. Ballistreri, S. Geremia, A. Pappalardo, G. A. Tomaselli, R. M. Toscano, D. Sciotto, Dalton Trans. 2014, 43, 2183-2193. - PubMed
  28. D. M. Homden, C. Redshaw, Chem. Rev. 2008, 108, 5086-5130. - PubMed
  29. J. V. Prata, P. D. Barata, RSC Adv. 2016, 6, 1659-1669. - PubMed
  30. M. Deska, B. Dondela, W. Sliwa, ARKIVOC (Gainesville, FL, U.S.) 2015, 2015, 393-416. - PubMed
  31. Calixarenes and Beyond (Eds. P. Neri, J. L. Sessler, M.-X. Wang) Springer International Publishing Switzerland, Cham, 2016. - PubMed
  32. F. Zhang, Y. Sun, D. Tian, W. S. Shin, J. S. Kim, H. Li, Chem. Commun. 2016, 52, 12685-12693. - PubMed
  33. G. Brancatelli, C. Capici, G. Gattuso, S. Geremia, A. Notti, S. Pappalardo, M. F. Parisi, S. Sortino, E. Vittorino, Chem. Asian J. 2012, 7, 50-54. - PubMed
  34. Calixarenes in the Nanoworld (Eds. J. Vicens, J. Harrowfield, L. Baklouti) Springer Netherlands, Dordrecht, 2007. - PubMed
  35. L. Turunen, U. Warzok, R. Puttreddy, N. K. Beyeh, C. A. Schalley, K. Rissanen, Angew. Chem. Int. Ed. 2016, 55, 14033-14036; - PubMed
  36. Angew. Chem. 2016, 128, 14239-14242. - PubMed
  37. R. Pinalli, E. Dalcanale, F. Ugozzoli, C. Massera, CrystEngComm 2016, 18, 5788-5802. - PubMed
  38. C. B. Aakeröy, P. D. Chopade, C. F. Quinn, J. Desper, CrystEngComm 2014, 16, 3796-3801. - PubMed
  39. E. Menozzi, M. Busi, R. Ramingo, M. Campagnolo, S. Geremia, E. Dalcanale, Chem. Eur. J. 2005, 11, 3136-3148. - PubMed
  40. E. Guzmán-Percástegui, M. Vonlanthen, B. Quiroz-García, M. Flores-Alamo, E. Rivera, I. Castillo, Dalton Trans. 2015, 44, 15966-15975. - PubMed
  41. A. Castillo, J. L. Martínez, P. R. Martínez-Alanis, I. Castillo, Inorg. Chim. Acta 2010, 363, 1204-1211. - PubMed
  42. A. F. Danil de Namor, A. Aguilar-Cornejo, R. Soualhi, M. Shehab, K. B. Nolan, N. Ouazzani, L. Mandi, J. Phys. Chem. B 2005, 109, 14735-14741. - PubMed
  43. G. Arena, A. Contino, G. Maccarrone, D. Sciotto, C. Sgarlata, Tetrahedron Lett. 2007, 48, 8274-8276. - PubMed
  44. C. Bonaccorso, F. Nicoletta, V. Zito, G. Arena, D. Sciotto, C. Sgarlata, Supramol. Chem. 2013, 25, 615-625. - PubMed
  45. K. Iwamoto, K. Araki, S. Shinkai, Tetrahedron 1991, 47, 4325-4342. - PubMed
  46. P. Gans, A. Sabatini, A. Vacca, Talanta 1996, 43, 1739-1753. - PubMed
  47. M. Kurihara, K. Ozutsumi, T. Kawashima, J. Chem. Soc. Dalton Trans. 1994, 3267-3271. - PubMed
  48. “HypNMR Stability constants from chemical shift data,” can be found under http://www.hyperquad.co.uk/hypnmr.htm. - PubMed
  49. C. Sgarlata, G. Arena, C. G. C. G. Fortuna, D. Sciotto, C. Bonaccorso, Supramol. Chem. 2016, 28, 544-550. - PubMed
  50. C. Bonaccorso, A. Ciadamidaro, C. Sgarlata, D. Sciotto, G. Arena, Chem. Commun. 2010, 46, 7139-7141. - PubMed
  51. L. Avram, Y. Cohen, Chem. Soc. Rev. 2015, 44, 586-602. - PubMed
  52. N. K. Beyeh, A. Ala-Korpi, F. Pan, H. H. Jo, E. V. Anslyn, K. Rissanen, Chem. Eur. J. 2015, 21, 9556-9562. - PubMed
  53. Crystals were obtained also by the co-crystallization of the BPPC calixarene in the presence of Cu2+ ions. From the data collection, it was possible to determine only the unit cell parameters (a=b=14.856 Å, c=40.389 Å, α=β=γ=90°), suggesting a tetragonal cell, similar to the polymeric complex obtained with the Zn2+. Nevertheless, owing to the poor quality of the diffraction, it was not possible to determine correctly the space group to solve the structure. - PubMed
  54. CCDC 1491825 (TPC), 1491828 ( BPPC), 1497345 (1), 1506215 (2), 1494109 (3), 1497010 (4), 1496970 (5),and 1496969 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. - PubMed
  55. G. I. Grasso, S. Gentile, M. L. Giuffrida, C. Satriano, C. Sgarlata, M. Sgarzi, G. Tomaselli, G. Arena, L. Prodi, RSC Adv. 2013, 3, 24288-24297. - PubMed

Publication Types

Grant support