Display options
Share it on

Heliyon. 2020 Jan 16;6(1):e03208. doi: 10.1016/j.heliyon.2020.e03208. eCollection 2020 Jan.

Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system.

Heliyon

Daniel Massote Magalhães, Albená Nunes-Silva, Guilherme Carvalho Rocha, Lucas Nunes Vaz, Marcelo Henrique Salviano de Faria, Erica Leandro Marciano Vieira, Natalia Pessoa Rocha, Ana Cristina Simões E Silva

Affiliations

  1. Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room 281, Belo Horizonte, Postal Code: 30130-100, MG, Brazil.
  2. Department of Physical Education and Sports, Centro Desportivo da Universidade Federal de Ouro Preto (UFOP), Rua Dois, 110, Campus Universitário - Ginásio de Esportes, Ouro Preto, MG, Postal Code: 35400-000, Brazil.
  3. Department of Neurology, University of Texas Health Science Center at Houston, USA.

PMID: 31989052 PMCID: PMC6970173 DOI: 10.1016/j.heliyon.2020.e03208

Abstract

AIMS: The renin-angiotensin system (RAS) is a dual system with two opposite arms: i) the classical one formed by the angiotensin converting enzyme (ACE), angiotensin (Ang) II and angiotensin type 1 (AT1) receptors; ii) the counter-regulatory arm consisting of ACE2, Ang-(1-7) and Mas receptor. Physical exercise can modulate this system, however, only animal studies have compared the effects of different intensity protocols on the RAS. No data with humans were provided. Therefore, we investigated the acute effect of two protocols of isowork aerobic exercise [High-Intensity Interval Exercise (HIIE) and Moderate-Intensity Continuous Exercise (MICE)] in plasma and urinary levels of RAS components in physically active men.

MAIN METHODS: The HIIE protocol included a 5-minute warm-up cycling at 60-70% of heart rate peak (HRp) intensity followed by 10 sets of 30 s above 90% with 1 min of recovery and 3 min of cool down. The MICE protocol was performed at a constant power corresponding to 60-70% of HRp and finalized at the same total work of HIIE. Blood and urine samples were collected before and after the protocols. Plasma and urinary levels of ACE, ACE2, Ang-(1-7) and Ang II were analyzed by enzyme-linked immunoassay.

KEY FINDINGS: While the HIIE protocol significantly increased urinary levels of ACE and plasma levels of ACE2, the MICE protocol elevated urinary concentrations of ACE2 and of Ang-(1-7). A greater increase of urine concentrations of Ang-(1-7) occurred in the MICE if compared with the HIIE protocol.

SIGNIFICANCE: Aerobic physical exercise acutely increases the activity of the counter-regulatory RAS axis, mostly the MICE protocol.

© 2020 The Authors.

Keywords: Aerobic exercise; Angiotensin II; Angiotensin-(1–7); Cardiovascular system; Health sciences; High-intensity interval exercise; Metabolism; Moderate-intensity continuous exercise; Musculoskeletal system; Physiology; Renal system; Renin angiotensin system

References

  1. U S Armed Forces Med J. 1959 Jun;10(6):675-88 - PubMed
  2. Int J Behav Nutr Phys Act. 2015 Jul 15;12:93 - PubMed
  3. J Sports Sci Med. 2015 Nov 24;14(4):849-56 - PubMed
  4. Can J Sport Sci. 1992 Dec;17(4):338-45 - PubMed
  5. Br J Nutr. 1978 Nov;40(3):497-504 - PubMed
  6. J Pediatr. 2004 Jul;145(1):93-8 - PubMed
  7. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8258-63 - PubMed
  8. J Physiol. 2017 May 1;595(9):2915-2930 - PubMed
  9. Pediatr Nephrol. 2012 Oct;27(10):1835-45 - PubMed
  10. Am J Physiol Renal Physiol. 2016 Mar 9;310(10):F945-F957 - PubMed
  11. Med Sci Sports Exerc. 2004 Aug;36(8):1314-20 - PubMed
  12. Am J Physiol Regul Integr Comp Physiol. 2019 Jun 1;316(6):R776-R782 - PubMed
  13. Regul Pept. 2012 Aug 20;177(1-3):1-11 - PubMed
  14. Med Sci Sports Exerc. 2018 Sep;50(9):1818-1826 - PubMed
  15. J Sports Med Phys Fitness. 2007 Jun;47(2):234-8 - PubMed
  16. J Cardiopulm Rehabil Prev. 2011 Nov-Dec;31(6):378-85 - PubMed
  17. Physiol Rev. 2018 Jan 1;98(1):505-553 - PubMed
  18. J Am Coll Cardiol. 2008 Jul 22;52(4):287-92 - PubMed
  19. Sports Med. 2015 Oct;45(10):1469-81 - PubMed
  20. Med Sci Sports Exerc. 1982;14(5):377-81 - PubMed
  21. Eur J Cardiovasc Prev Rehabil. 2004 Jun;11(3):216-22 - PubMed
  22. Hypertens Res. 2016 Jul;39(7):506-12 - PubMed
  23. Circ Res. 2000 Sep 1;87(5):E1-9 - PubMed
  24. J Sci Med Sport. 2019 Aug;22(8):941-947 - PubMed
  25. Sports Med. 1987 Nov-Dec;4(6):381-94 - PubMed
  26. Sports Med. 2019 Nov;49(11):1687-1721 - PubMed
  27. Am J Hypertens. 1998 Feb;11(2):137-46 - PubMed
  28. Protein Pept Lett. 2017 Nov 17;24(9):809-816 - PubMed
  29. Int J Sports Med. 2013 May;34(5):402-8 - PubMed
  30. Scand J Med Sci Sports. 2006 Feb;16 Suppl 1:3-63 - PubMed
  31. Regul Pept. 2010 Apr 9;161(1-3):1-7 - PubMed
  32. Obes Rev. 2015 Nov;16(11):942-61 - PubMed
  33. Clin Sci (Lond). 2018 Jul 23;132(14):1487-1507 - PubMed
  34. J Appl Physiol (1985). 2011 Nov;111(5):1272-7 - PubMed
  35. J Pediatr. 2019 Feb;205:55-60.e1 - PubMed
  36. Obes Rev. 2017 Jun;18(6):635-646 - PubMed

Publication Types