Display options
Share it on

Nanotechnol Sci Appl. 2020 Jan 07;13:1-9. doi: 10.2147/NSA.S212323. eCollection 2020.

Bio Micro-Nano Technologies of Antioxidants Optimised Their Pharmacological and Cellular Effects, ex vivo, in Pancreatic β-Cells.

Nanotechnology, science and applications

Armin Mooranian, Nassim Zamani, Momir Mikov, Svetlana Goločorbin-Kon, Goran Stojanovic, Frank Arfuso, Bozica Kovacevic, Hani Al-Salami

Affiliations

  1. Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia.
  2. Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.
  3. Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia.
  4. Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia.
  5. Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.

PMID: 32021126 PMCID: PMC6954832 DOI: 10.2147/NSA.S212323

Abstract

INTRODUCTION: Recent formulation and microencapsulation studies of probucol (PB) using the polymer sodium alginate (SA) and bile acids have shown promising results but PB stability, and pharmacology profiles remain suboptimal. This study aimed to investigate novel polymers for the nano and micro encapsulation of PB, with the anti-inflammatory bile acid ursodeoxycholic acid (UDCA).

MATERIAL AND METHODS: Six formulations using three types of polymers were investigated with and without UDCA. The polymers were NM30D, RL30D, and RS30D and they were mixed with SA and PB at set ratios and microencapsulated using oscillating-voltage-mediated nozzle technology coupled with ionic gelation. The microcapsules were examined for physical and biological effects using pancreatic β-cells.

RESULTS AND DISCUSSION: UDCA addition did not adversely affect the morphology and physical features of the microcapsules. Despite thermal stability remaining unchanged, bile acid incorporation did enhance the electrokinetic stability of the formulation system for NM30D and RL30D polymers. Mechanical stability remained similar in all groups. Enhanced uptake of PB from the microcapsule by pancreatic β-cells was only seen with NM30D-UDCA-intercalated microcapsules and this effect was sustained at both glucose levels of 5.5 and 35.5 mM.

CONCLUSION: UDCA addition enhanced PB delivery and biological effects in a formulation-dependent manner.

© 2020 Mooranian et al.

Keywords: NM30D; diabetes; microencapsulation; oxidative stress; probucol; ursodeoxycholic acid

Conflict of interest statement

H Al-Salami has been, and is currently receiving, funding from Beijing Nat-Med Biotechnology Co., Ltd., and reports grants from EU Horizon 2020, outside the submitted work. The authors report no other

References

  1. Nutr Metab Cardiovasc Dis. 2000 Dec;10(6):305-9 - PubMed
  2. J Clin Invest. 1998 Jun 15;101(12):2790-9 - PubMed
  3. Drug Deliv Transl Res. 2018 Jun;8(3):543-551 - PubMed
  4. EMBO J. 2006 Apr 5;25(7):1419-25 - PubMed
  5. Artif Cells Nanomed Biotechnol. 2016 Aug;44(5):1290-7 - PubMed
  6. Mol Med. 1998 Mar;4(3):165-78 - PubMed
  7. Drug Des Devel Ther. 2014 Sep 29;8:1673-83 - PubMed
  8. Artif Cells Nanomed Biotechnol. 2018 Sep;46(6):1156-1162 - PubMed
  9. Pharm Res. 2017 Jun;34(6):1217-1223 - PubMed
  10. Drug Deliv Transl Res. 2016 Feb;6(1):17-23 - PubMed
  11. J Diabetes Complications. 2016 Nov - Dec;30(8):1593-1599 - PubMed
  12. J Microencapsul. 2015;32(6):589-97 - PubMed
  13. J Pharm Innov. 2014;9:150-157 - PubMed
  14. Drug Dev Ind Pharm. 2007 Feb;33(2):101-11 - PubMed
  15. Drug Des Devel Ther. 2014 Sep 09;8:1221-30 - PubMed
  16. Mol Pharm. 2015 Mar 2;12(3):665-74 - PubMed
  17. Public Health. 2007 Feb;121(2):92-9 - PubMed
  18. J Microencapsul. 2015;32(2):151-6 - PubMed
  19. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S748-S754 - PubMed
  20. Artif Cells Nanomed Biotechnol. 2016;44(1):194-200 - PubMed
  21. Drug Deliv Transl Res. 2015 Oct;5(5):511-22 - PubMed
  22. J Gen Intern Med. 2009 Oct;24(10):1144-8 - PubMed
  23. Diabetologia. 1980 Sep;19(3):169-73 - PubMed
  24. J Biomed Mater Res. 2002 Jan;59(1):118-26 - PubMed
  25. Diabetologia. 2018 Feb;61(2):399-412 - PubMed
  26. Arterioscler Thromb Vasc Biol. 1999 May;19(5):1325-32 - PubMed
  27. Chem Pharm Bull (Tokyo). 2002 Nov;50(11):1495-8 - PubMed
  28. Pharm Dev Technol. 2013 May-Jun;18(3):570-6 - PubMed
  29. Med J Aust. 1989 Oct 16;151(8):444, 446, 448, 450 - PubMed
  30. Artif Cells Nanomed Biotechnol. 2016;44(2):588-95 - PubMed
  31. AAPS PharmSciTech. 2015 Feb;16(1):45-52 - PubMed
  32. Artif Cells Nanomed Biotechnol. 2016 Nov;44(7):1642-53 - PubMed
  33. Diabetes Care. 1989 Nov-Dec;12(10):694-70 - PubMed
  34. Biol Pharm Bull. 2009 Nov;32(11):1880-4 - PubMed
  35. J Colloid Interface Sci. 1999 Aug 15;216(2):276-284 - PubMed
  36. Kardiologiia. 2009;49(2):9-14 - PubMed
  37. Pharm Dev Technol. 2015;20(6):702-9 - PubMed
  38. Clin Endocrinol (Oxf). 2012 May;76(5):674-82 - PubMed
  39. Int J Pharm. 2002 Aug 21;242(1-2):307-11 - PubMed

Publication Types