Display options
Share it on

Cancers (Basel). 2020 Jan 10;12(1). doi: 10.3390/cancers12010173.

HB-EGF-EGFR Signaling in Bone Marrow Endothelial Cells Mediates Angiogenesis Associated with Multiple Myeloma.

Cancers

Luigia Rao, Donato Giannico, Patrizia Leone, Antonio Giovanni Solimando, Eugenio Maiorano, Concetta Caporusso, Loren Duda, Roberto Tamma, Rosanna Mallamaci, Nicola Susca, Alessio Buonavoglia, Matteo Claudio Da Vià, Domenico Ribatti, Vallì De Re, Angelo Vacca, Vito Racanelli

Affiliations

  1. Department of Biomedical Sciences and Human Oncology, Guido Baccelli Unit of Internal Medicine, University of Bari Medical School, 70124 Bari, Italy.
  2. Department of Emergency and Organ Transplantations, Section of Pathological Anatomy, University of Bari Medical School, 70124 Bari, Italy.
  3. Department of Interdisciplinary Medicine, University of Bari Medical School, 70124 Bari, Italy.
  4. Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, 70124 Bari, Italy.
  5. Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70124 Bari, Italy.
  6. Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany.
  7. Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy.
  8. Vito Racanelli MD, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Policlinico, 11 Piazza G. Cesare, 70124 Bari, Italy.

PMID: 31936715 PMCID: PMC7017291 DOI: 10.3390/cancers12010173

Abstract

Epidermal growth factor receptor (EGFR) and its ligand heparin-binding EGF-like growth factor (HB-EGF) sustain endothelial cell proliferation and angiogenesis in solid tumors, but little is known about the role of HB-EGF-EGFR signaling in bone marrow angiogenesis and multiple myeloma (MM) progression. We found that bone marrow endothelial cells from patients with MM express high levels of EGFR and HB-EGF, compared with cells from patients with monoclonal gammopathy of undetermined significance, and that overexpressed HB-EGF stimulates EGFR expression in an autocrine loop. We also found that levels of EGFR and HB-EGF parallel MM plasma cell number, and that HB-EGF is a potent inducer of angiogenesis in vitro and in vivo. Moreover, blockade of HB-EGF-EGFR signaling, by an anti-HB-EGF neutralizing antibody or the EGFR inhibitor erlotinib, limited the angiogenic potential of bone marrow endothelial cells and hampered tumor growth in an MM xenograft mouse model. These results identify HB-EGF-EGFR signaling as a potential target of anti-angiogenic therapy, and encourage the clinical investigation of EGFR inhibitors in combination with conventional cytotoxic drugs as a new therapeutic strategy for MM.

Keywords: EGFR; HB-EGF; bone marrow angiogenesis; endothelial cells; multiple myeloma

References

  1. J Clin Med. 2019 Jul 09;8(7): - PubMed
  2. F1000Res. 2016 Sep 08;5: - PubMed
  3. Oncogene. 2002 Apr 11;21(16):2584-92 - PubMed
  4. Gene. 2006 Jan 17;366(1):2-16 - PubMed
  5. Oncotarget. 2018 Jan 30;9(17):13366-13381 - PubMed
  6. Cancer Res. 2017 Nov 15;77(22):6097-6108 - PubMed
  7. Mol Cancer Ther. 2008 Oct;7(10):3441-51 - PubMed
  8. Cancer Res. 2005 Sep 15;65(18):8242-9 - PubMed
  9. Expert Opin Ther Targets. 2012 Jan;16(1):15-31 - PubMed
  10. Adv Clin Exp Med. 2018 Feb;27(2):291-297 - PubMed
  11. Eur Respir J. 2011 Mar;37(3):624-31 - PubMed
  12. J Thorac Oncol. 2009 Feb;4(2):161-6 - PubMed
  13. Oncologist. 2009 Nov;14(11):1116-30 - PubMed
  14. Semin Cell Dev Biol. 2014 Apr;28:22-30 - PubMed
  15. Leukemia. 2006 Feb;20(2):193-9 - PubMed
  16. Cell Mol Life Sci. 2008 May;65(10):1566-84 - PubMed
  17. Cancer Res. 2004 Aug 1;64(15):5283-90 - PubMed
  18. Leukemia. 2018 Jan;32(1):120-130 - PubMed
  19. Clin Cancer Res. 2011 Nov 1;17(21):6733-41 - PubMed
  20. Histopathology. 2016 Jul;69(1):99-106 - PubMed
  21. J Clin Oncol. 2007 May 20;25(15):1960-6 - PubMed
  22. Eur J Cancer. 2006 Jul;42(11):1581-90 - PubMed
  23. Oncologist. 2020 Feb;25(2):112-118 - PubMed
  24. Blood. 2004 Mar 1;103(5):1829-37 - PubMed
  25. Br J Haematol. 2003 Jun;121(5):749-57 - PubMed
  26. Nat Rev Dis Primers. 2017 Jul 20;3:17046 - PubMed
  27. Curr Opin Pharmacol. 2008 Aug;8(4):413-8 - PubMed
  28. N Engl J Med. 2019 Oct 24;381(17):1632-1643 - PubMed
  29. Biomed Res Int. 2013;2013:546318 - PubMed
  30. Oncoimmunology. 2018 Oct 22;8(1):e1486949 - PubMed
  31. Microvasc Res. 2004 Mar;67(2):117-24 - PubMed
  32. Oncologist. 2006 Apr;11(4):358-73 - PubMed
  33. Cell Rep. 2017 Feb 7;18(6):1543-1557 - PubMed
  34. Leukemia. 2011 Jun;25(6):906-8 - PubMed
  35. J Adv Pract Oncol. 2018 Mar;9(2):189-200 - PubMed
  36. Cancer Cell. 2016 May 9;29(5):639-652 - PubMed
  37. Mol Oncol. 2018 Jan;12(1):3-20 - PubMed
  38. Cancer Discov. 2013 Aug;3(8):862-9 - PubMed
  39. Blood Cancer J. 2013 Feb 08;3:e102 - PubMed
  40. Lab Invest. 2007 Nov;87(11):1159-70 - PubMed
  41. Int J Oncol. 2017 Jun;50(6):1947-1954 - PubMed
  42. Int J Pancreatol. 2001;29(1):47-52 - PubMed
  43. Genome Biol. 2016 Jan 26;17:13 - PubMed
  44. Oncogene. 2005 May 12;24(21):3512-24 - PubMed
  45. Nature. 2014 Apr 3;508(7494):118-22 - PubMed
  46. Oncogene. 2014 Jul 17;33(29):3784-93 - PubMed
  47. Nat Protoc. 2006;1(1):85-91 - PubMed
  48. Lancet Oncol. 2012 Mar;13(3):239-46 - PubMed
  49. Hematol Oncol Clin North Am. 2004 Oct;18(5):1007-21, viii - PubMed
  50. Br J Haematol. 2004 Nov;127(3):280-4 - PubMed

Publication Types

Grant support