Display options
Share it on

Mol Ther Methods Clin Dev. 2019 Dec 24;17:209-219. doi: 10.1016/j.omtm.2019.11.021. eCollection 2020 Jun 12.

Lentiviral Vector Production Titer Is Not Limited in HEK293T by Induced Intracellular Innate Immunity.

Molecular therapy. Methods & clinical development

Carolina B Ferreira, Rebecca P Sumner, Maria T Rodriguez-Plata, Jane Rasaiyaah, Richard S Milne, Adrian J Thrasher, Waseem Qasim, Greg J Towers

Affiliations

  1. Molecular and Cellular Immunology Unit, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.
  2. Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
  3. Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK.

PMID: 31970199 PMCID: PMC6965512 DOI: 10.1016/j.omtm.2019.11.021

Abstract

Most gene therapy lentiviral vector (LV) production platforms employ HEK293T cells expressing the oncogenic SV40 large T-antigen (TAg) that is thought to promote plasmid-mediated gene expression. Studies on other viral oncogenes suggest that TAg may also inhibit the intracellular autonomous innate immune system that triggers defensive antiviral responses upon detection of viral components by cytosolic sensors. Here we show that an innate response can be generated after HIV-1-derived LV transfection in HEK293T cells, particularly by the transgene, yet, remarkably, this had no effect on LV titer. Further, overexpression of DNA sensing pathway components led to expression of inflammatory cytokine and interferon (IFN) stimulated genes but did not result in detectable IFN or CXCL10 and had no impact on LV titer. Exogenous IFN-β also did not affect LV production or transduction efficiency in primary T cells. Additionally, manipulation of TAg did not affect innate antiviral responses, but stable expression of TAg boosted vector production in HEK293 cells. Our findings demonstrate a measure of innate immune competence in HEK293T cells but, crucially, show that activation of inflammatory signaling is uncoupled from cytokine secretion in these cells. This provides new mechanistic insight into the unique suitability of HEK293T cells for LV manufacture.

© 2020 The Authors.

Keywords: HEK293T; Lentiviral vectors; SV40 large T-antigen; innate immunity; vector titer

References

  1. J Virol. 1998 Nov;72(11):8463-71 - PubMed
  2. Biotechniques. 2011 Aug;51(2):119-28 - PubMed
  3. Sci Transl Med. 2017 Jan 25;9(374): - PubMed
  4. Science. 2013 Aug 23;341(6148):1233151 - PubMed
  5. Science. 2013 Aug 23;341(6148):903-6 - PubMed
  6. Nature. 1996 Sep 26;383(6598):344-7 - PubMed
  7. Nature. 2008 Jan 24;451(7177):425-30 - PubMed
  8. Nature. 2009 Oct 8;461(7265):788-92 - PubMed
  9. EMBO J. 2015 Aug 4;34(15):2078-95 - PubMed
  10. J Virol. 1992 Aug;66(8):5110-3 - PubMed
  11. Cell. 2017 Nov 16;171(5):1110-1124.e18 - PubMed
  12. PLoS One. 2012;7(12):e50859 - PubMed
  13. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392-6 - PubMed
  14. Nature. 2011 Apr 28;472(7344):481-5 - PubMed
  15. Sci Transl Med. 2014 Jan 1;6(217):217ra3 - PubMed
  16. Cell Host Microbe. 2012 Jun 14;11(6):597-606 - PubMed
  17. Cell Stem Cell. 2018 Dec 6;23(6):820-832.e9 - PubMed
  18. Nature. 2002 Aug 8;418(6898):646-50 - PubMed
  19. Nature. 2013 Oct 24;502(7472):559-62 - PubMed
  20. Virology. 2009 Feb 20;384(2):285-93 - PubMed
  21. N Engl J Med. 2011 Aug 25;365(8):725-33 - PubMed
  22. Cell Host Microbe. 2008 Jun 12;3(6):388-98 - PubMed
  23. Genes Dev. 1998 Jul 1;12(13):2061-72 - PubMed
  24. Nature. 2015 Oct 8;526(7572):212-7 - PubMed
  25. Hum Gene Ther. 2009 Apr;20(4):293-301 - PubMed
  26. Immunity. 2006 Jan;24(1):93-103 - PubMed
  27. Mol Cell Biol. 1987 Jan;7(1):379-87 - PubMed
  28. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9837-42 - PubMed
  29. PLoS One. 2012;7(6):e40348 - PubMed
  30. Science. 2009 Nov 6;326(5954):818-23 - PubMed
  31. Science. 1996 Apr 12;272(5259):263-7 - PubMed
  32. Science. 2013 Aug 23;341(6148):1233158 - PubMed
  33. EMBO J. 2014 Dec 17;33(24):2937-46 - PubMed
  34. Mol Ther Methods Clin Dev. 2019 Jun 07;14:134-147 - PubMed
  35. Nature. 2015 Oct 8;526(7572):218-23 - PubMed
  36. Nat Immunol. 2013 Jan;14(1):19-26 - PubMed
  37. J Virol Methods. 2009 Mar;156(1-2):1-7 - PubMed
  38. Nature. 2010 Sep 16;467(7313):318-22 - PubMed
  39. J Gen Virol. 1977 Jul;36(1):59-74 - PubMed
  40. J Virol. 2009 Apr;83(8):3719-33 - PubMed
  41. Hum Gene Ther Clin Dev. 2013 Dec;24(4):182-90 - PubMed
  42. Nat Commun. 2018 Jul 24;9(1):2896 - PubMed
  43. Nature. 2013 Nov 28;503(7477):530-4 - PubMed
  44. Nature. 2011 Apr 21;472(7343):361-5 - PubMed
  45. Nat Biotechnol. 1997 Sep;15(9):871-5 - PubMed
  46. Science. 2015 Oct 30;350(6260):568-71 - PubMed
  47. Nature. 2019 Mar;567(7748):394-398 - PubMed
  48. Blood. 2010 Apr 15;115(15):3109-17 - PubMed
  49. J Virol. 1994 Dec;68(12):8035-44 - PubMed
  50. Sci Rep. 2015 Mar 12;5:9021 - PubMed
  51. J Virol. 2010 Sep;84(18):9254-66 - PubMed
  52. Science. 2015 Sep 11;349(6253):1228-32 - PubMed

Publication Types

Grant support