Display options
Share it on

Angew Chem Int Ed Engl. 2020 Mar 16;59(12):4897-4901. doi: 10.1002/anie.201916073. Epub 2020 Feb 18.

Carbon Monoxide Activation by a Molecular Aluminium Imide: C-O Bond Cleavage and C-C Bond Formation.

Angewandte Chemie (International ed. in English)

Andreas Heilmann, Jamie Hicks, Petra Vasko, Jose M Goicoechea, Simon Aldridge

Affiliations

  1. Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
  2. Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.

PMID: 31999037 DOI: 10.1002/anie.201916073

Abstract

Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: aluminium; aluminyl reagent; carbon monoxide; imide; small molecule activation

References

  1.   - PubMed
  2. Advances in Fischer-Tropsch Synthesis Catalysts and Catalysis (Eds.: B. H. Davis, M. L. Occelli), CRC, Boca Raton, 2009; - PubMed
  3. A. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 2007, 107, 1692-1744; - PubMed
  4. C. K. Rofer-DePoorter, Chem. Rev. 1981, 81, 447-474; - PubMed
  5. C. Masters, Adv. Organomet. Chem. 1979, 17, 61-103. - PubMed
  6. s-Block: - PubMed
  7. L. Gmelin, Ann. Phys. Chem. 1825, 4, 31-62; - PubMed
  8. W. Büchner, Helv. Chim. Acta 1963, 46, 2111-2120; - PubMed
  9. S. Coluccia, E. Garrone, E. Guglielminotti, A. Zecchina, J. Chem. Soc. Faraday Trans. 1 1981, 77, 1063-1073; - PubMed
  10. P. W. Lednor, P. C. Versloot, J. Chem. Soc. Chem. Commun. 1983, 284-285; - PubMed
  11. R. Lalrempuia, C. E. Kefalidis, S. J. Bonyhady, B. Schwarze, L. Maron, A. Stasch, C. Jones, J. Am. Chem. Soc. 2015, 137, 8944-8947; - PubMed
  12. M. D. Anker, M. S. Hill, J. P. Lowe, M. F. Mahon, Angew. Chem. Int. Ed. 2015, 54, 10009-10011; - PubMed
  13. Angew. Chem. 2015, 127, 10147-10149. - PubMed
  14. d-Block: - PubMed
  15. P. A. Bianconi, I. D. Williams, M. P. Engeler, S. J. Lippard, J. Am. Chem. Soc. 1986, 108, 311-313; - PubMed
  16. P. A. Bianconi, R. N. Vrtis, C. P. Rao, I. D. Williams, M. P. Engeler, S. J. Lippard, Organometallics 1987, 6, 1968-1977; - PubMed
  17. R. N. Vrtis, C. P. Rao, S. G. Bott, S. J. Lippard, J. Am. Chem. Soc. 1988, 110, 7564-7566; - PubMed
  18. J. D. Protasiewicz, S. J. Lippard, J. Am. Chem. Soc. 1991, 113, 6564-6570; - PubMed
  19. E. M. Carnahan, J. D. Protasiewicz, S. J. Lippard, Acc. Chem. Res. 1993, 26, 90-97; - PubMed
  20. A. J. M. Miller, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2008, 130, 11874-11875; - PubMed
  21. T. Watanabe, Y. Ishida, T. Matsuo, H. Kawaguchi, J. Am. Chem. Soc. 2009, 131, 3474-3475. - PubMed
  22. f-Block: - PubMed
  23. W. J. Evans, J. W. Grate, L. A. Hughes, H. Zhang, J. L. Atwood, J. Am. Chem. Soc. 1985, 107, 3728-3730; - PubMed
  24. O. T. Summerscales, F. G. N. Cloke, P. B. Hitchcock, J. C. Green, N. Hazari, Science 2006, 311, 829-831; - PubMed
  25. O. T. Summerscales, F. G. N. Cloke, P. B. Hitchcock, J. C. Green, N. Hazari, J. Am. Chem. Soc. 2006, 128, 9602-9603; - PubMed
  26. W. J. Evans, D. S. Lee, J. W. Ziller, N. Kaltsoyannis, J. Am. Chem. Soc. 2006, 128, 14176-14184; - PubMed
  27. A. S. Frey, F. G. N. Cloke, P. B. Hitchcock, I. J. Day, J. C. Green, G. Aitken, J. Am. Chem. Soc. 2008, 130, 13816-13817; - PubMed
  28. P. L. Arnold, Z. R. Turner, R. M. Bellabarba, R. P. Tooze, Chem. Sci. 2011, 2, 77-79; - PubMed
  29. S. M. Mansell, N. Kaltsoyannis, P. L. Arnold, J. Am. Chem. Soc. 2011, 133, 9036-9051; - PubMed
  30. B. M. Gardner, J. C. Stewart, A. L. Davis, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Proc. Natl. Acad. Sci. USA 2012, 109, 9265-9270; - PubMed
  31. B. Wang, G. Luo, M. Nishiura, Y. Luo, Z. Hou, J. Am. Chem. Soc. 2017, 139, 16967-16973. - PubMed
  32. p-Block: - PubMed
  33. H. Braunschweig, T. Dellermann, R. D. Dewhurst, W. C. Ewing, K. Hammond, J. O. C. Jimenez-Halla, T. Kramer, I. Krummenacher, J. Mies, A. K. Phukan, A. Vargas, Nat. Chem. 2013, 5, 1025-1028, See also ref. 4i and - PubMed
  34. X. P. Wang, Z. L. Zhu, Y. Peng, H. Lei, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2009, 131, 6912-6913; - PubMed
  35. Z. D. Brown, P. P. Power, Inorg. Chem. 2013, 52, 6248-6259; - PubMed
  36. R. Y. Kong, M. R. Crimmin, J. Am. Chem. Soc. 2018, 140, 13614-13617 (mixed p/d-block); - PubMed
  37. A. V. Protchenko, P. Vasko, D. C. H. Do, J. Hicks, M. A. Fuentes, C. Jones, S. Aldridge, Angew. Chem. Int. Ed. 2019, 58, 1808-1812; - PubMed
  38. Angew. Chem. 2019, 131, 1822-1826. - PubMed
  39. Two-centre reduction of CO by boron/phosphorus frustrated Lewis pairs has been reported: - PubMed
  40. M. Sajid, L.-M. Elmer, C. Rosorius, C. G. Daniliuc, S. Grimme, G. Kehr, G. Erker, Angew. Chem. Int. Ed. 2013, 52, 2243-2246; - PubMed
  41. Angew. Chem. 2013, 125, 2299-2302; - PubMed
  42. R. Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc. 2013, 135, 4974-4977; - PubMed
  43. M. Devillard, B. de Bruin, M. I. Siegler, J. I. van der Vlugt, Chem. Eur. J. 2017, 23, 13628; See also: - PubMed
  44. M. Arrowsmith, J. Böhnke, H. Braunschweig, M. A. Celik, Angew. Chem. Int. Ed. 2017, 56, 14287-14292; - PubMed
  45. Angew. Chem. 2017, 129, 14475-14480; - PubMed
  46. H. Wang, L. Wu, Z. Lin, Z. Xie, Angew. Chem. Int. Ed. 2018, 57, 8708-8713; - PubMed
  47. Angew. Chem. 2018, 130, 8844-8849. - PubMed
  48.   - PubMed
  49. M. Majumdar, I. Omlor, C. B. Yildiz, A. Azizoglu, V. Huch, D. Scheschekewitz, Angew. Chem. Int. Ed. 2015, 54, 8746-8750; - PubMed
  50. Angew. Chem. 2015, 127, 8870-8874; - PubMed
  51. Y. Wang, A. Kostenko, T. J. Hadlington, M.-P. Luecke, S. Yao, M. Driess, J. Am. Chem. Soc. 2019, 141, 626-634; - PubMed
  52. Y. Xiong, S. Yao, T. Szilvási, A. Ruzicka, M. Driess, Chem. Commun. 2020, 56, 747-750. - PubMed
  53.   - PubMed
  54. J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Nature 2018, 557, 92-95; - PubMed
  55. J. Hicks, A. Mansikkamäki, P. Vasko, J. M. Goicoechea, S. Aldridge, Nat. Chem. 2019, 11, 237-241; - PubMed
  56. J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, J. Am. Chem. Soc. 2019, 141, 11000-11003; - PubMed
  57. J. Hicks, A. Heilmann, P. Vasko, J. M. Goicoechea, S. Aldridge, Angew. Chem. Int. Ed. 2019, 58, 17265-17268; - PubMed
  58. Angew. Chem. 2019, 131, 17425-17428. - PubMed
  59.   - PubMed
  60. J. Li, X. Li, W. Huang, H. Hu, J. Zhang, C. Cui, Chem. Eur. J. 2012, 18, 15263-15267. During the final stages of revision of this manuscript, a related aluminium imide synthesis was reported: - PubMed
  61. M. D. Anker, R. J. Schwamm, M. P. Coles, Chem. Commun. 2020, https://doi.org/10.1039/C9CC09214E. - PubMed
  62. D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441; - PubMed
  63. Angew. Chem. 2015, 127, 6498-6541. - PubMed
  64.   - PubMed
  65. N. J. Hardman, C. Cui, H. W. Roesky, W. H. Fink, P. P. Power, Angew. Chem. Int. Ed. 2001, 40, 2172-2174; - PubMed
  66. Angew. Chem. 2001, 113, 2230-2232; See also: - PubMed
  67. C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, Angew. Chem. Int. Ed. 2000, 39, 4531-4533; - PubMed
  68. Angew. Chem. 2000, 112, 4705-4707; See also: - PubMed
  69. H. Zhu, J. Chai, V. Chandrasekhar, H. W. Roesky, J. Magull, D. Vidovic, H.-G. Schmidt, M. Noltemeyer, P. P. Power, W. A. Merrill, J. Am. Chem. Soc. 2004, 126, 9472-9473; - PubMed
  70. H. Zhu, Z. Yang, J. Magull, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, Organometallics 2005, 24, 6420-6425. - PubMed
  71. M. D. Anker, M. Lein, M. P. Coles, Chem. Sci. 2019, 10, 1212-1218. - PubMed
  72. M. D. Anker, M. P. Coles, Angew. Chem. Int. Ed. 2019, 58, 18261-18265; - PubMed
  73. Angew. Chem. 2019, 131, 18429-18433. - PubMed
  74. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832-2838. - PubMed
  75. Recent examples of H2 activation by early transition metal imides include: - PubMed
  76. X. Han, L. Xiang, C. A. Lamsfus, W. Mao, E. Lu, L. Maron, X. Leng, Y. Chen, Chem. Eur. J. 2017, 23, 14728-14732; - PubMed
  77. H. S. la Pierre, J. Arnold, F. D. Toste, Angew. Chem. Int. Ed. 2011, 50, 3900-3903; - PubMed
  78. Angew. Chem. 2011, 123, 3986-3989; - PubMed
  79. A. M. Geer, C. Tejel, J. A. López, M. A. Ciriano, Angew. Chem. Int. Ed. 2014, 53, 5614-5618; - PubMed
  80. Angew. Chem. 2014, 126, 5720-5724. - PubMed
  81. For a review of C−H activation by early transition metal imides, see: P. T. Wolczanski, Organometallics 2018, 37, 505-516. - PubMed
  82. For a previous report of an aluminium carbonyl complex see: - PubMed
  83. A. J. Hinchcliffe, J. S. Ogden, D. D. Oswald, J. Chem. Soc. Chem. Commun. 1972, 338-339; For examples of isolable compounds featuring coordination of the CO molecule to a group 13 element centre, see: - PubMed
  84. F. Dahcheh, D. Martin, D. W. Stephan, G. Bertrand, Angew. Chem. Int. Ed. 2014, 53, 13159-13163; - PubMed
  85. Angew. Chem. 2014, 126, 13375-13379; - PubMed
  86. H. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W. Tate, A. Vargas, Q. Ye, Nature 2015, 522, 327-330. - PubMed
  87. CCDC 1972052, 1972053, 1972054, 1972055, 1972056, and 1972057 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. - PubMed

Publication Types

Grant support