Display options
Share it on

Brain Sci. 2020 Feb 04;10(2). doi: 10.3390/brainsci10020083.

Combining HF rTMS over the Left DLPFC with Concurrent Cognitive Activity for the Offline Modulation of Working Memory in Healthy Volunteers: A Proof-of-Concept Study.

Brain sciences

Ilya Bakulin, Alfiia Zabirova, Dmitry Lagoda, Alexandra Poydasheva, Anastasiia Cherkasova, Nikolay Pavlov, Peter Kopnin, Dmitry Sinitsyn, Elena Kremneva, Maxim Fedorov, Elena Gnedovskaya, Natalia Suponeva, Michael Piradov

Affiliations

  1. Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  2. Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, territory of innovation center «Skolkovo», Moscow 121205, Russia.

PMID: 32033106 PMCID: PMC7071618 DOI: 10.3390/brainsci10020083

Abstract

It has been proposed that the effectiveness of non-invasive brain stimulation (NIBS) as a cognitive enhancement technique may be enhanced by combining the stimulation with concurrent cognitive activity. However, the benefits of such a combination in comparison to protocols without ongoing cognitive activity have not yet been studied. In the present study, we investigate the effects of fMRI-guided high-frequency repetitive transcranial magnetic stimulation (HF rTMS) over the left dorsolateral prefrontal cortex (DLPFC) on working memory (WM) in healthy volunteers, using an n-back task with spatial and verbal stimuli and a spatial span task. In two combined protocols (TMS + WM + (maintenance) and TMS + WM + (rest)) trains of stimuli were applied in the maintenance and rest periods of the modified Sternberg task, respectively. We compared them to HF rTMS without a cognitive load (TMS + WM-) and control stimulation (TMS - WM + (maintenance)). No serious adverse effects appeared in this study. Among all protocols, significant effects on WM were shown only for the TMS + WM- with oppositely directed influences of this protocol on storage and manipulation in spatial WM. Moreover, there was a significant difference between the effects of TMS + WM- and TMS + WM + (maintenance), suggesting that simultaneous cognitive activity does not necessarily lead to an increase in TMS effects.

Keywords: N-back task; cognitive enhancement; cognitive function; cognitive training; dorsolateral prefrontal cortex; neuromodulation; non-invasive brain stimulation; transcranial magnetic stimulation; working memory

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Neuropsychology. 2005 Mar;19(2):223-32 - PubMed
  2. Biol Psychiatry. 2013 Mar 15;73(6):510-7 - PubMed
  3. Front Hum Neurosci. 2015 Jun 16;9:303 - PubMed
  4. J Neurophysiol. 1973 Jan;36(1):61-78 - PubMed
  5. Psychon Bull Rev. 2002 Dec;9(4):637-71 - PubMed
  6. Hum Brain Mapp. 2014 Jan;35(1):140-51 - PubMed
  7. Hum Brain Mapp. 2018 Feb;39(2):783-802 - PubMed
  8. Clin Neurophysiol. 2009 Dec;120(12):2008-2039 - PubMed
  9. Prog Neuropsychopharmacol Biol Psychiatry. 2019 Mar 8;89:347-360 - PubMed
  10. PLoS One. 2019 Mar 22;14(3):e0213707 - PubMed
  11. Neuropsychologia. 1971 Mar;9(1):97-113 - PubMed
  12. Neurophysiol Clin. 2010 Mar;40(1):1-5 - PubMed
  13. Cereb Cortex. 2016 Dec;26(12):4563-4573 - PubMed
  14. PLoS One. 2018 Mar 27;13(3):e0194878 - PubMed
  15. Brain Cogn. 2014 Apr;86:1-9 - PubMed
  16. Neurosci Biobehav Rev. 2019 Dec;107:47-58 - PubMed
  17. Brain Sci. 2017 Apr 27;7(5): - PubMed
  18. PLoS One. 2015 Mar 17;10(3):e0120640 - PubMed
  19. Neuroimage. 2014 Jan 15;85 Pt 3:1058-68 - PubMed
  20. J Cogn Neurosci. 2006 Oct;18(10):1712-22 - PubMed
  21. Neuroscience. 2017 Nov 5;363:134-141 - PubMed
  22. Clin Neurophysiol. 2015 Jun;126(6):1071-1107 - PubMed
  23. Curr Top Behav Neurosci. 2018;37:213-230 - PubMed
  24. J Neurosci Methods. 2014 Jan 30;222:250-9 - PubMed
  25. J Exp Psychol. 1958 Apr;55(4):352-8 - PubMed
  26. Clin Neurophysiol. 2014 Nov;125(11):2150-2206 - PubMed
  27. Neurosci Biobehav Rev. 2017 Dec;83:381-404 - PubMed
  28. J Neurol Sci. 2018 Jan 15;384:15-20 - PubMed
  29. Neuropsychologia. 2001;39(4):415-9 - PubMed
  30. Science. 1971 Aug 13;173(3997):652-4 - PubMed
  31. Nat Commun. 2019 Feb 25;10(1):936 - PubMed
  32. eNeuro. 2018 Feb 14;5(1): - PubMed
  33. Hum Brain Mapp. 2019 Dec 1;40(17):4912-4933 - PubMed
  34. Clin Neurophysiol. 2013 Mar;124(3):536-44 - PubMed
  35. Front Psychol. 2018 May 17;9:741 - PubMed
  36. Front Psychol. 2014 Dec 23;5:1475 - PubMed
  37. Science. 1966 Aug 5;153(3736):652-4 - PubMed
  38. J Magn Reson Imaging. 2013 Mar;37(3):501-30 - PubMed
  39. J Neurol Neurosurg Psychiatry. 2017 May;88(5):386-394 - PubMed
  40. Appl Neuropsychol Child. 2017 Jul-Sep;6(3):245-247 - PubMed
  41. Brain Topogr. 2011 Jan;23(4):355-67 - PubMed
  42. Hum Brain Mapp. 2019 Feb 1;40(2):608-627 - PubMed
  43. Neuroimage. 2014 Nov 15;102 Pt 2:646-56 - PubMed
  44. Front Psychol. 2018 Mar 27;9:401 - PubMed
  45. Hum Brain Mapp. 2005 May;25(1):46-59 - PubMed
  46. Neuroimage. 2012 Mar;60(1):830-46 - PubMed
  47. Front Neurosci. 2017 Aug 18;11:462 - PubMed
  48. Front Hum Neurosci. 2019 Jun 12;13:180 - PubMed
  49. Neuropsychologia. 2008;46(7):2056-63 - PubMed
  50. J Clin Neurol. 2016 Jan;12(1):57-64 - PubMed
  51. J Clin Exp Neuropsychol. 2010 Oct;32(8):871-80 - PubMed
  52. Neuron. 2013 Oct 30;80(3):718-28 - PubMed
  53. J Cogn Neurosci. 2007 Jun;19(6):907-20 - PubMed
  54. Sci Rep. 2018 Oct 4;8(1):14835 - PubMed
  55. J Cogn Neurosci. 2009 Feb;21(2):207-21 - PubMed

Publication Types