Display options
Share it on

Nature. 2020 Feb;578(7795):386-391. doi: 10.1038/s41586-020-2005-6. Epub 2020 Feb 10.

Attosecond pulse shaping using a seeded free-electron laser.

Nature

Praveen Kumar Maroju, Cesare Grazioli, Michele Di Fraia, Matteo Moioli, Dominik Ertel, Hamed Ahmadi, Oksana Plekan, Paola Finetti, Enrico Allaria, Luca Giannessi, Giovanni De Ninno, Carlo Spezzani, Giuseppe Penco, Simone Spampinati, Alexander Demidovich, Miltcho B Danailov, Roberto Borghes, George Kourousias, Carlos Eduardo Sanches Dos Reis, Fulvio Billé, Alberto A Lutman, Richard J Squibb, Raimund Feifel, Paolo Carpeggiani, Maurizio Reduzzi, Tommaso Mazza, Michael Meyer, Samuel Bengtsson, Neven Ibrakovic, Emma Rose Simpson, Johan Mauritsson, Tamás Csizmadia, Mathieu Dumergue, Sergei Kühn, Harshitha Nandiga Gopalakrishna, Daehyun You, Kiyoshi Ueda, Marie Labeye, Jens Egebjerg Bækhøj, Kenneth J Schafer, Elena V Gryzlova, Alexei N Grum-Grzhimailo, Kevin C Prince, Carlo Callegari, Giuseppe Sansone

Affiliations

  1. Physikalisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany.
  2. ISM-CNR, Trieste LD2 Unit, Trieste, Italy.
  3. Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste, Italy.
  4. Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Rome, Italy.
  5. Laboratory of Quantum Optics, University of Nova Gorica, Nova Gorica, Slovenia.
  6. SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  7. Department of Physics, University of Gothenburg, Gothenburg, Sweden.
  8. Institut für Photonik, Technische Universität Wien, Vienna, Austria.
  9. Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.
  10. European XFEL GmbH, Schenefeld, Germany.
  11. Department of Physics, Lund University, Lund, Sweden.
  12. ELI-ALPS, ELI-Hu Kft, Szeged, Hungary.
  13. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
  14. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA.
  15. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
  16. Physikalisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany. [email protected].

PMID: 32042171 DOI: 10.1038/s41586-020-2005-6

Abstract

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales

References

  1. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009). - PubMed
  2. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007). - PubMed
  3. Kapteyn, H., Cohen, O., Christov, I. & Murnane, M. Harnessing attosecond science in the quest for coherent X-rays. Science 317, 775–778 (2007). - PubMed
  4. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001). - PubMed
  5. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004). - PubMed
  6. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003). - PubMed
  7. Nabekawa, Y. et al. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Phys. Rev. Lett. 97, 153904 (2006). - PubMed
  8. López-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005). - PubMed
  9. Gustafsson, E. et al. Broadband attosecond pulse shaping. Opt. Lett. 32, 1353–1355 (2007). - PubMed
  10. Hofstetter, M. et al. Attosecond dispersion control by extreme ultraviolet multilayer mirrors. Opt. Express 19, 1767–1776 (2011). - PubMed
  11. Bartels, R. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000). - PubMed
  12. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007). - PubMed
  13. Emma, P. et al. First lasing and operation of an ängstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010). - PubMed
  14. Marinelli, A. et al. Experimental demonstration of a single-spike hard-X-ray free electron-laser starting from noise. Appl. Phys. Lett. 111, 151101 (2017). - PubMed
  15. Huang, S. et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017). - PubMed
  16. Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photon. 12, 215–220 (2018). - PubMed
  17. Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012). - PubMed
  18. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003). - PubMed
  19. Schulz, S. et al. Femtosecond all-optical synchronisation of an X-ray free-electron laser. Nat. Commun. 6, 5938 (2015). - PubMed
  20. Danailov, M. B. et al. Towards jitter-free pump-probe measurements at seeded free electron laser facilities. Opt. Express 22, 12869–12879 (2014). - PubMed
  21. Prince, K. C. et al. Coherent control with a short-wavelength free-electron laser. Nat. Photon. 10, 176–179 (2016). - PubMed
  22. Iablonskyi, D. et al. Observation and control of laser-enabled Auger decay. Phys. Rev. Lett. 119, 073203 (2017). - PubMed
  23. Takahashi, E. J. et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013). - PubMed
  24. Nayak, A. et al. Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses. Phys. Rev. A 98, 023426 (2018). - PubMed
  25. Zholents, A. A. Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers. Phys. Rev. Spec. Top. Accel. Beams 8, 040701 (2005). - PubMed
  26. Thompson, N. R. & McNeil, B. W. J. Mode locking in a free-electron laser amplifier. Phys. Rev. Lett. 100, 203901 (2008). - PubMed
  27. Ribič, P. R. et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser. Nat. Photon. 13, 555–561 (2019). - PubMed
  28. Hemsing, E. et al. Soft X-ray FEL Seeding Studies for LCLS-II: Task Force Status Report. A White Paper by SLAC and LBNL. Technical Note SLAC-TN-19-001 (SLAC, 2019); available at https://www.slac.stanford.edu/pubs/slactns/tn06/slac-tn-19-001.pdf (2019). - PubMed
  29. Grattoni, V. et al. Status of seeding development at sFLASH. In Proc. FEL2017 (eds Bishofberger, K., Carlsten, B. & Schaa, V. R. W.) 136–139 (JACoW, 2018). - PubMed
  30. Zhao, Z. et al. Status of the SXFEL facility. Appl. Sci. 7, 607 (2017). - PubMed
  31. Yong, Y. et al. Dalian extreme ultraviolet coherent light source. Chin. J. Lasers 46, 0100005 (2019). - PubMed
  32. Finetti, P. et al. Pulse duration of seeded free-electron lasers. Phys. Rev. X 7, 021043 (2017). - PubMed
  33. Zangrando, M. et al. Recent results of PADReS, the Photon Analysis Delivery and REduction System, from the FERMI FEL commissioning and user operations. J. Synchr. Rad. 22, 565–570 (2015). - PubMed
  34. Reiche, S. Update on the FEL code GENESIS 1.3. In Proc. 36th Int. Free Electron Laser Conf. (FEL’14) (eds Chrin, J., Reiche, S. & Schaa, V. R. W.) TUP019, 403–407 (JACoW, 2014). - PubMed

Publication Types