Display options
Share it on

Nat Commun. 2020 Feb 12;11(1):854. doi: 10.1038/s41467-020-14675-5.

Light intensity-induced photocurrent switching effect.

Nature communications

Agnieszka Podborska, Maciej Suchecki, Krzysztof Mech, Mateusz Marzec, Kacper Pilarczyk, Konrad Szaciłowski

Affiliations

  1. Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059, Kraków, Poland.
  2. Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059, Kraków, Poland.
  3. Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059, Kraków, Poland. [email protected].

PMID: 32051416 PMCID: PMC7016128 DOI: 10.1038/s41467-020-14675-5

Abstract

A better control over processes responsible for the photocurrent generation in semiconductors and nanocomposites is essential in the fabrication of photovoltaic devices, efficient photocatalysts and optoelectronic elements. Therefore, new approaches towards photochemical properties tuning are intensively searched for. Among numerous parameters, the photocurrent polarity is of great importance to the overall performance of a device. Usually, the polarity is controlled through an alignment of electronic states/bands, tailoring of applied potential or suitable selection of incident light wavelengths. In most scenarios though, the influence of light intensity is somehow neglected and either some arbitrarily chosen, natural conditions are mimicked or this parameter is varied only in a narrow range. Here we present a ternary nanocomposite in which the persistent photocurrent polarity switching is achieved through changes in the light intensity. We also present arguments suggesting this behaviour is of a general character and should be considered also in other photochemical systems.

References

  1. Pilarczyk, K. et al. Molecules, semiconductors, light and information: Towards future sensing and computing paradigms. Coord. Chem. Rev. 365, 23–40 (2018). - PubMed
  2. Ouyang, B., Zhang, K. & Yang, Y. Photocurrent polarity controlled by light wavelength in self-powered ZnO nanowires/SnS photodetector system. iScience 2, 16–23 (2018). - PubMed
  3. Chen, H., Liu, G. & Wang, L. Switches photocurrent direction in Au/TiO - PubMed
  4. Antuch, M., Millet, P., Iwase, A. & Kudo, A. The role of surface states during photocurrent switching: intensity modulated photocurrent spectroscopy analysis of BiVO - PubMed
  5. Pilarczyk, K. et al. Coordination chemistry for information acquisition and processing. Coord. Chem. Rev. 325, 135–160 (2016). - PubMed
  6. Szaciłowski, K. Digital information processing in molecular systems. Chem. Rev. 108, 3481–3548 (2008). - PubMed
  7. Szaciłowski, K. Infochemistry. Information Processing at the Nanoscale (John Wiley & Sons, 2012). - PubMed
  8. Gawęda, S., Podborska, A., Macyk, W. & Szaciłowski, K. Nanoscale optoelectronic switches and logic devices. Nanoscale 1, 299–316 (2009). - PubMed
  9. Podborska, A. et al. Anomalous photocathodic behavior of CdS within the Urbach tail region. J. Phys. Chem. C 113, 6774–6784 (2009). - PubMed
  10. Kwolek, P., Pilarczyk, K., Tokarski, T., Lewandowska, K. & Szaciłowski, K. Bi - PubMed
  11. Park, H., Lee, J. & Choi, W. Study of special cases where the enhanced photocatalytic activies of Pt/TiO - PubMed
  12. Mech, J., Mech, K. & Szaciłowski, K. TiO - PubMed
  13. Pilarczyk, K. et al. Charge transfer tuninig in TiO - PubMed
  14. Chun, S. Y. et al. Power-dependent photocatalytic activity of ZnO. Bull. Korean Chem. Soc. 38, 410–413 (2017). - PubMed
  15. Godin, R., Hisatomi, T., Domen, K. & Durrant, J. R. Understanding the visible-light photocatalytic activity of GaN:ZnO solid solution: the role of Rh - PubMed
  16. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017). - PubMed
  17. Subramanian, V., Wolf, E. E. & Kamat, P. V. Catalysis with TiO - PubMed
  18. Klee, V. et al. Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS - PubMed
  19. Li, L. et al. Ternary Ta - PubMed
  20. Molcanov, K., Kojic-Prodic, B. & Meden, A. Unique electronic and structural properties of 1,4-benzoquinones: crystalochemistry of alkali chloranilate hydrates. Croat. Chem. Acta 82, 387–396 (2009). - PubMed
  21. Molcanov, K., Jurić, M. & Kojić-Prodić, B. A novel type of coordination mode of chloranilic acid leading to the formation of polymeric coordination ribbon in the series of mixed-ligand copper(II) complexes with 1,10-phenanthroline. Dalton Trans. 43, 7208–7218 (2014). - PubMed
  22. Pilarczyk, K. et al. Synaptic behavior in an optoelectronic device based on semiconductor–nanotube hybrid. Adv. Electron Mater. 2, 1500471 (2016). - PubMed
  23. Kitagawa, S. & Kawata, S. Coordination compounds of 1,4-dihydroxybenxoquinone and its homologues. Structures and properties. Coord. Chem. Rev. 224, 11–34 (2002). - PubMed
  24. Vileno, B. et al. Spectroscopic and photophysical properties of a highly derivatized C - PubMed
  25. Sirkant, V. & Clarke, D. R. On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447 (1998). - PubMed
  26. Janotti, A. & Van deWalle, C. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009). - PubMed
  27. Xu, Y. & Schoonen, M. The absolute energy position of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000). - PubMed
  28. Bloh, J., Dillert, R. & Bahnemann, D. Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres. Phys. Chem. Chem. Phys. 16, 5833–5845 (2014). - PubMed
  29. Kołodziejczak-Radzimska, A. & Jesionowski, T. Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014). - PubMed
  30. Blachecki, A. et al. Organotitania-based nanostructures as a suitable platform for the implementation of binary, ternary, and fuzzy logic systems. ChemPhysChem 18, 1798–1810 (2017). - PubMed
  31. Kwolek, P. et al. Lead molybdate—a promising material for optoelectronics and photocatalysis. J. Mater. Chem. C 3, 2614–2623 (2015). - PubMed
  32. Kong, L., Tedrow, O. N., Chan, Y. F. & Zepp, R. G. Light-Initiated transformation of fullerenol in aqueous media. Environ. Sci. Technol. 43, 9155–9160 (2009). - PubMed
  33. Bisquert, J., Fabregat-Santiago, F., Mora-Seró, I., Garcia-Belmonte, G. & Giménez, S. Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J. Phys. Chem. C 113, 17278–17290 (2009). - PubMed
  34. Kumar, S. G. & Rao, K. S. R. K. Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015). - PubMed
  35. Quintana, M., Edvinsson, T., Hagfeldt, A. & Boschloo, G. Comparison of dye-sensitized ZnO and TiO - PubMed
  36. Oekermann, T., Yoshida, T., Minoura, H., Wijayantha, K. G. U. & Peter, L. M. Electron transport and back reaction in electrochemically self-assembled nanoporous ZnO/Dye hybrid films. J. Phys. Chem. B 108, 8364–8370 (2004). - PubMed
  37. Liu, T. & Troisi, A. What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them. Adv. Mater. 25, 1038–1041 (2013). - PubMed
  38. Haddon, R. C. The fullerenes: powerful carbon-based electron acceptors. Philos. Trans. R. Soc. Lond. A 343, 53–62 (1993). - PubMed
  39. Warzecha, M., Oszajca, M., Pilarczyk, K. & Szaciłowski, K. A three-valued photoelectrochemical logic device realising accept anything and consensus operation. Chem. Commun. 51, 3559–3561 (2015). - PubMed
  40. Lee, K. M., Lai, C. W., Ngai, K. S. & Juan, J. C. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016). - PubMed
  41. Khalafi, T., Buazar, F. & Ghanemi, H. Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Sci. Rep. 9, 6866 (2019). - PubMed
  42. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017). - PubMed
  43. Dloczik, L. et al. Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B 49, 10281–10289 (1997). - PubMed
  44. Wang, M. et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2, 385–289 (2010). - PubMed
  45. Xie, X., Crespo, G. A., Mistlberger, G. & Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 6, 202–207 (2014). - PubMed
  46. Mathew, S. et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014). - PubMed
  47. Bloh, J. Z. A holistic approach to model the kinetics of photocatalytic reactions. Front. Chem. 7, 128 (2019). - PubMed
  48. Tu, W. et al. Construction of unique two-dimensional MoS - PubMed
  49. Wang, D. et al. Photocatalytic water oxidation on BiVO - PubMed
  50. Ran, J., Zhang, J., Yu, J., Jaroniec, M. & Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014). - PubMed
  51. Frisch, M.J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E. et al. Gaussian 09, Revision E.01 (Wallingford, CT, 2013). - PubMed
  52. GaussView 5 (Semichem Inc., Shawnee Mission, KS, 2009). - PubMed

Publication Types

Grant support