Display options
Share it on

Front Microbiol. 2020 Jan 31;11:26. doi: 10.3389/fmicb.2020.00026. eCollection 2020.

Nitrate Metabolism Modulates Biosynthesis of Biofilm Components in Uropathogenic .

Frontiers in microbiology

Alberto J Martín-Rodríguez, Mikael Rhen, Keira Melican, Agneta Richter-Dahlfors

Affiliations

  1. Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Solna, Sweden.
  2. Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
  3. Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.

PMID: 32082279 PMCID: PMC7005491 DOI: 10.3389/fmicb.2020.00026

Abstract

To successfully colonize a variety of environments, bacteria can coordinate complex collective behaviors such as biofilm formation. To thrive in oxygen limited niches, bacteria's versatile physiology enables the utilization of alternative electron acceptors. Nitrate, the second most favorable electron acceptor after oxygen, plays a prominent role in the physiology of uropathogenic

Copyright © 2020 Martín-Rodríguez, Rhen, Melican and Richter-Dahlfors.

Keywords: biofilm; curli; in vivo; nitrate respiration; tissue microbiology; urinary tract infection; uropathogenic Escherichia coli

References

  1. Genes Dev. 2008 Sep 1;22(17):2434-46 - PubMed
  2. Nat Rev Microbiol. 2015 May;13(5):269-84 - PubMed
  3. J Med Microbiol. 2005 Dec;54(Pt 12):1171-82 - PubMed
  4. Environ Microbiol. 2014 Jun;16(6):1455-71 - PubMed
  5. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 - PubMed
  6. Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16669-74 - PubMed
  7. Pathog Dis. 2018 Nov 1;76(8): - PubMed
  8. Mol Microbiol. 2002 Apr;44(1):143-55 - PubMed
  9. Appl Environ Microbiol. 1983 Aug;46(2):521-4 - PubMed
  10. BMC Genomics. 2011 Feb 21;12:123 - PubMed
  11. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15264-9 - PubMed
  12. Front Microbiol. 2018 Jul 10;9:1530 - PubMed
  13. J Chromatogr B Biomed Appl. 1994 Nov 18;661(2):185-91 - PubMed
  14. J Biol Chem. 1993 Jan 15;268(2):771-4 - PubMed
  15. Acad Radiol. 2008 Nov;15(11):1467-73 - PubMed
  16. J Bacteriol. 1993 Jun;175(11):3259-68 - PubMed
  17. J Bacteriol. 2002 Jun;184(12):3253-9 - PubMed
  18. Infect Immun. 2011 Oct;79(10):4218-26 - PubMed
  19. FEMS Microbiol Lett. 1996 Feb 1;136(1):1-11 - PubMed
  20. Cell Microbiol. 2007 Feb;9(2):413-24 - PubMed
  21. Clin Exp Pharmacol Physiol. 2006 Oct;33(10):1002-5 - PubMed
  22. Kidney Int. 2001 Mar;59(3):893-904 - PubMed
  23. Anal Biochem. 1982 Oct;126(1):131-8 - PubMed
  24. PLoS Pathog. 2010 Nov 11;6(11):e1001187 - PubMed
  25. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83 - PubMed
  26. Biomolecules. 2017 Oct 31;7(4): - PubMed
  27. ISME J. 2011 Feb;5(2):173-83 - PubMed
  28. Biochem Soc Trans. 2005 Feb;33(Pt 1):159-61 - PubMed
  29. Pathog Dis. 2015 Jun;73(4): - PubMed
  30. mBio. 2013 Jul 02;4(4): - PubMed
  31. Mol Biol Evol. 2012 Dec;29(12):3669-83 - PubMed
  32. mSphere. 2018 May 16;3(3): - PubMed
  33. J Bacteriol. 2011 May;193(10):2587-97 - PubMed
  34. Science. 2013 Feb 8;339(6120):708-11 - PubMed
  35. Microbiol Mol Biol Rev. 2013 Mar;77(1):1-52 - PubMed
  36. PLoS Pathog. 2011 Feb;7(2):e1001298 - PubMed
  37. J Bacteriol. 2013 Apr;195(7):1371-80 - PubMed
  38. Nat Rev Microbiol. 2016 Aug 11;14(9):563-75 - PubMed
  39. Curr Opin Microbiol. 2012 Feb;15(1):15-22 - PubMed
  40. Cold Spring Harb Perspect Med. 2013 Apr 01;3(4):a010306 - PubMed
  41. RNA Biol. 2014;11(5):494-507 - PubMed
  42. J Bacteriol. 1999 Nov;181(21):6573-84 - PubMed
  43. Sci Rep. 2016 Feb 19;6:20871 - PubMed
  44. J Bacteriol. 1998 Aug;180(16):4192-8 - PubMed
  45. Cell Microbiol. 2008 Oct;10(10):1987-98 - PubMed
  46. Int J Mol Sci. 2017 Sep 30;18(10): - PubMed
  47. Infect Immun. 2007 Aug;75(8):3780-90 - PubMed
  48. Science. 2003 Jul 4;301(5629):105-7 - PubMed

Publication Types