Display options
Share it on

Sci Rep. 2020 Mar 05;10(1):4082. doi: 10.1038/s41598-020-61096-x.

Revealing the Hidden Details of Nanostructure in a Pharmaceutical Cream.

Scientific reports

Delaram Ahmadi, Najet Mahmoudi, Peixun Li, Kun Ma, James Doutch, Fabrizia Foglia, Richard K Heenan, David Barlow, M Jayne Lawrence

Affiliations

  1. Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
  2. STFC ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK.
  3. Department of Chemistry, Christopher Ingold Laboratories, University College London, Gordon Street, London, WC1H 0AJ, UK.
  4. Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK. [email protected].
  5. Division of Pharmacy & Optometry, Stopford Building, University of Manchester, 99 Oxford Road, Manchester, M13 9PG, UK. [email protected].
  6. Division of Pharmacy & Optometry, Stopford Building, University of Manchester, 99 Oxford Road, Manchester, M13 9PG, UK. [email protected].

PMID: 32139812 PMCID: PMC7058068 DOI: 10.1038/s41598-020-61096-x

Abstract

Creams are multi-component semi-solid emulsions that find widespread utility across a wide range of pharmaceutical, cosmetic, and personal care products, and they also feature prominently in veterinary preparations and processed foodstuffs. The internal architectures of these systems, however, have to date been inferred largely through macroscopic and/or indirect experimental observations and so they are not well-characterized at the molecular level. Moreover, while their long-term stability and shelf-life, and their aesthetics and functional utility are critically dependent upon their molecular structure, there is no real understanding yet of the structural mechanisms that underlie the potential destabilizing effects of additives like drugs, anti-oxidants or preservatives, and no structure-based rationale to guide product formulation. In the research reported here we sought to address these deficiencies, making particular use of small-angle neutron scattering and exploiting the device of H/D contrast variation, with complementary studies also performed using bright-field and polarised light microscopy, small-angle and wide-angle X-ray scattering, and steady-state shear rheology measurements. Through the convolved findings from these studies we have secured a finely detailed picture of the molecular structure of creams based on Aqueous Cream BP, and our findings reveal that the structure is quite different from the generic picture of cream structure that is widely accepted and reproduced in textbooks.

References

  1. Sethi, A., Kaur, T., Malhotra, S. & Gambhir, M. Moisturizers: The Slippery Road. Indian J. Dermatol. 61, 279–287 (2016). - PubMed
  2. Tresch, M. et al. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet Res. 15, 174 (2019). - PubMed
  3. Tadros, T. F. Formulation Science and Technology in Volume 3, Pharmaceutical, Cosmetic and Personal Care Formulations. (2018). - PubMed
  4. Kónya, M., Dékány, I. & Erõs, I. X-ray investigation of the role of the mixed emulsifier in the structure formation in o/w creams. Colloid Polym. Sci. 285, 657–663 (2007). - PubMed
  5. Junginger, H. E. Colloidal structures of O/W creams. Pharm. Weekbl. 6, 141–149 (1984). - PubMed
  6. Fahelelbom, K. M. S. & Yasser, E.-S. Analysis of preservatives in pharmaceutical products. Pharm. Rev. 5 (2007). - PubMed
  7. de Vringer, T., Joosten, J. G. H. & Junginger, H. E. A study of the gel structure in a nonionic O/W cream by X-ray diffraction and microscopic methods. Colloid Polym. Sci. 265, 167–179 (1987). - PubMed
  8. Barry, B. W. & Eccleston, G. M. influence of gel networks in controlling consistency of o/w emulsions stabilised by mixed emulsions. J. Texture Stud. 4, 53–81 (1973). - PubMed
  9. Dahl, V. et al. Structural Analysis of a Modern o/w-Emulsion Stabilized by a Polyglycerol Ester Emulsifier and Consistency Enhancers. Colloids Interfaces. 2, 3 (2018). - PubMed
  10. Lukic, M. et al. Moisturizing emulsion systems based on the novel long-chain alkyl polyglucoside emulsifier: The contribution of thermoanalytical methods to the formulation development. J. Therm. Anal. Calorim. 111, 2045–2057 (2013). - PubMed
  11. Pasquali, R. C., Taurozzi, M. P., Sacco, N. & Bregni, C. Birefringent Emulsions Stabilized with Steareth-2 and Steareth-2. Lat. Am. J. Pharm. 6 (2008). - PubMed
  12. Terescenco, D., Picard, C., Clemenceau, F., Grisel, M. & Savary, G. Influence of the emollient structure on the properties of cosmetic emulsion containing lamellar liquid crystals. Colloids Surf. A Physicochem. Eng. Asp. 536, 10–19 (2018). - PubMed
  13. Savic, S. et al. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: The influence of colloidal structure on emulsions skin hydration potential. J. Colloid Interface Sci. 358, 182–191 (2011). - PubMed
  14. Vilasau, J. et al. Phase behaviour of a mixed ionic/nonionic surfactant system used to prepare stable oil-in-water paraffin emulsions. Colloids Surf. A Physicochem. Eng. Asp. 384, 473–481 (2011). - PubMed
  15. Lee, J. B. et al. Efficient dermal delivery of retinyl palmitate: Progressive polarimetry and Raman spectroscopy to evaluate the structure and efficacy. Eur. J. Pharm. Sci. 78, 111–120 (2015). - PubMed
  16. Karl, W. et al. Effect of surfactant on structure thermal behavior of cetyl stearyl alcohols: DSC and X-ray scattering studies. J. Therm. Anal. Calorim. 123, 1411–1417 (2016). - PubMed
  17. Emulsifying Wax - British Pharmacopoeia, https://www.pharmacopoeia.com/bp-2019/formulated-specific/emulsifying-wax.html?text=semi-solid&date=2019-01-01&page=1&page-size=1000 . - PubMed
  18. Emulsifying Ointment - British Pharmacopoeia, https://www.pharmacopoeia.com/bp-2019/formulated-specific/emulsifying-ointment.html?text=semi-solid&date=2019-01-01&page=1&page-size=1000 . - PubMed
  19. Bokuchava, G. D. & Gorshkova, Y. E. Analysis of small angle neutron scattering from nanocrystalline niobium carbide powders using global scattering functions. J. Optoelectron. Adv. Mat. 17, 985–990 (2015). - PubMed
  20. Su, T. J., Lu, J. R., Cui, Z. F., Thomas, R. K. & Heenan, R. K. Application of Small Angle Neutron Scattering to the in Situ Study of Protein Fouling on Ceramic Membranes. Langmuir. 14, 5517–5520 (1998). - PubMed
  21. Schmidt, P. W. et al. Small‐angle x‐ray scattering from the surfaces of reversed‐phase silicas: Power‐law scattering exponents of magnitudes greater than four. J. Chem. Phys. 94, 1474–1479 (1991). - PubMed
  22. Campana, M., Webster, J. R. P., Lawrence, M. J. & Zarbakhsh, A. Structural conformation of lipids at the oil–water interface. Soft Matter. 8, 8904 (2012). - PubMed
  23. Valoppi, F., Calligaris, S. & Marangoni, A. G. Phase Transition and Polymorphic Behavior of Binary Systems Containing Fatty Alcohols and Peanut Oil. Cryst. Growth & Des. 16, 4209–4215 (2016). - PubMed
  24. Eccleston, G. M. Functions of mixed emulsifiers and emulsifying waxes in dermatological lotions and creams. Colloids Surf. A Physicochem. Eng. Asp. 123–124, 169–182 (1997). - PubMed
  25. Eccleston, G. M., Behan-Martin, M. K., Jones, G. R. & Towns-Andrews, E. Synchrotron X-ray investigations into the lamellar gel phase formed in pharmaceutical creams prepared with cetrimide and fatty alcohols. Int. J. Pharm. 203, 127–139 (2000). - PubMed
  26. Maciel, N. R. et al. A New System of Multiple Emulsions with Lamellar Gel Phases from Vegetable Oil. J. Disper. Sci. Tech. 37, 646–655 (2016). - PubMed
  27. Ferreira, G. A. & Loh, W. Structural Parameters of Lamellar Phases Formed by the Self-Assembly of Dialkyldimethylammonium Bromides in Aqueous Solution. J. Braz. Chem. Soc. https://doi.org/10.5935/0103-5053.20150297 (2015). - PubMed
  28. de Oliveira, E. C. V., Maciel, N. R., do Amaral, L. Q. & da Rocha-Filho, P. A. Natural Brazilian Raw Material to Develop O/W Emulsions Containing Lamellar Gel Phase (Development and Analysis of Emulsion with Vegetable Oils). J. Disper. Sci. Tech. 34, 1656–1662 (2013). - PubMed
  29. Hura, G. et al. Water structure as a function of temperature from X-ray scattering experiments and ab initio molecular dynamics. J. Phys. Chem. 5, 1981 (2003). - PubMed
  30. Hayter, J. B. & Penfold, J. An analytic structure factor for macroion solutions. Mol. Phys. 42, 109–118 (1981). - PubMed
  31. Hansen, J.-P. & Hayter, J. B. A rescaled MSA structure factor for dilute charged colloidal dispersions. Mol. Phys. 46, 651–656 (1982). - PubMed
  32. Caponetti, E., Chillura-Martino, D. & Pedone, L. Partitioning of Macrocyclic Compounds in a Cationic and an Anionic Micellar Solution: A Small-Angle Neutron Scattering Study. Langmuir. 20, 3854–3862 (2004). - PubMed
  33. Hassan, P. A., Fritz, G. & Kaler, E. W. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt. J. Colloid Interface Sci. 257, 154–162 (2003). - PubMed
  34. Tadros, T. F. Emulsion Formation, Stability, and Rheology in Emulsion Formation and Stability. 1–75 (John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527647941.ch1 , 2013). - PubMed
  35. Raposo, S. et al. Safety Assessment and Biological Effects of a New Cold Processed SilEmulsion for Dermatological Purpose. BioMed Res. Int. 2013, 1–10 (2013). - PubMed
  36. Sundberg, J. J. & Faergemann, J. A comparison of pentane-1,5-diol to other diols for use in dermatology. Expert Opin. Inv. Drug. 17, 601–610 (2008). - PubMed
  37. Aulton, M. E. & Taylor, K. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines. (Churchill Livingstone/Elsevier, 2013). - PubMed
  38. Junginger, H. E. Pharmaceutical Emulsions and Creams in Emulsions — A Fundamental and Practical Approach (ed. Sjöblom, J.) 189–205 (Springer Netherlands, 1992). https://doi.org/10.1007/978-94-011-2460-7_13 . - PubMed
  39. Zarbakhsh, A. et al. Neutron Reflection from the Liquid−Liquid Interface: Adsorption of Hexadecylphosphorylcholine to the Hexadecane−Aqueous Solution Interface. Langmuir. 21, 11704–11709 (2005). - PubMed
  40. Zarbakhsh, A., Querol, A., Bowers, J. & Webster, J. R. P. Structural studies of amphiphiles adsorbed at liquid–liquid interfaces using neutron reflectometry. Faraday Discuss. 129, 155–167 (2005). - PubMed
  41. Méndez-Bermúdez, J. G. & Dominguez, H. Structural changes of a sodium dodecyl sulfate (SDS) micelle induced by alcohol molecules. J. Mol. Model. 22, 33 (2016). - PubMed
  42. Bahramian, A. & Zarbakhsh, A. Interfacial equation of state for ionized surfactants at oil/water interfaces. Soft Matter. 11, 6482–6491 (2015). - PubMed
  43. Campana, M., Webster, J. R. P. & Zarbakhsh, A. Structural Studies of Nonionic Dodecanol Ethoxylates at the Oil–Water Interface: Effect of Increasing Head Group Size. Langmuir. 30, 10241–10247 (2014). - PubMed
  44. Montenegro, L., Rapisarda, L., Ministeri, C. & Puglisi, G. Effects of Lipids and Emulsifiers on the Physicochemical and Sensory Properties of Cosmetic Emulsions Containing Vitamin E. Cosmetics. 2, 35–47 (2015). - PubMed
  45. Ballmann, C. & Müeller, B. W. Stabilizing Effect of Cetostearyl Alcohol and Glycerylmonstearate as Co-emulsifiers on Hydrocarbon-free O/W Glyceride Creams. Pharm. Dev. Technol. 13, 433–445 (2008). - PubMed
  46. Rosen, W. E. & Berke, P. A. Modern concepts of cosmetic preservation. J. Soc. Cosmet. Chem. 24, 663–675 (1973). - PubMed
  47. Kwak, M.-S., Ahn, H.-J. & Song, K.-W. Rheological investigation of body cream and body lotion in actual application conditions. Korea. Aust. Rheol. J. 27, 241–251 (2015). - PubMed
  48. Heenan, R. K., Penfold, J. & King, S. M. SANS at Pulsed Neutron Sources: Present and Future Prospects. J. Appl. Cryst. 30, 1140–1147 (1997). - PubMed
  49. Wignall, G. D. & Bates, F. S. Absolute calibration of small-angle neutron scattering data. J. Appl. Cryst. 20, 28–40 (1987). - PubMed
  50. Berr, S. S. Solvent isotope effects on alkytrimethylammonium bromide micelles as a function of alkyl chain length. J. Phys. Chem. 91, 4760–4765 (1987). - PubMed
  51. Doucet, M. et al. SasView version 4.2. (Zenodo, 2018). https://doi.org/10.5281/ZENODO.1412040 . - PubMed
  52. FISH - Small Angle Scattering - Diamond Light Source, https://www.diamond.ac.uk/Instruments/Soft-Condensed-Matter/small-angle/SAXS-Software/CCP13/FISH.html . - PubMed
  53. Ma, G., Barlow, D. J., Lawrence, M. J., Heenan, R. K. & Timmins, P. Small-Angle Neutron-Scattering Studies of Nonionic Surfactant Vesicles. J. Phys. Chem. 104, 9081–9085 (2000). - PubMed
  54. Richard, D., Ferrand, M. & Kearley, G. J. Analysis and visualisation of neutron-scattering data. J. of Neutron Res. 4, 33–39 (1996). - PubMed

Publication Types