Display options
Share it on

Sci Rep. 2020 Feb 28;10(1):3759. doi: 10.1038/s41598-020-60331-9.

Α 10-gigawatt attosecond source for non-linear XUV optics and XUV-pump-XUV-probe studies.

Scientific reports

I Makos, I Orfanos, A Nayak, J Peschel, B Major, I Liontos, E Skantzakis, N Papadakis, C Kalpouzos, M Dumergue, S Kühn, K Varju, P Johnsson, A L'Huillier, P Tzallas, D Charalambidis

Affiliations

  1. Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece.
  2. Department of Physics, University of Crete, GR71003, Heraklion, Crete, Greece.
  3. ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary.
  4. Institute of Physics, University of Szeged, Dom tér 9, 6720, Szeged, Hungary.
  5. Department of Physics, Lund University, SE-221 00, Lund, Sweden.
  6. Department of Optics and Quantum Electronics, University of Szeged, Dom tér 9, 6720, Szeged, Hungary.
  7. Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece. [email protected].
  8. Department of Physics, University of Crete, GR71003, Heraklion, Crete, Greece. [email protected].
  9. ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary. [email protected].

PMID: 32111920 PMCID: PMC7048767 DOI: 10.1038/s41598-020-60331-9

Abstract

The quantum mechanical motion of electrons and nuclei in systems spatially confined to the molecular dimensions occurs on the sub-femtosecond to the femtosecond timescales respectively. Consequently, the study of ultrafast electronic and, in specific cases, nuclear dynamics requires the availability of light pulses with attosecond (asec) duration and of sufficient intensity to induce two-photon processes, essential for probing the intrinsic system dynamics. The majority of atoms, molecules and solids absorb in the extreme-ultraviolet (XUV) spectral region, in which the synthesis of the required attosecond pulses is feasible. Therefore, the XUV spectral region optimally serves the study of such ultrafast phenomena. Here, we present a detailed review of the first 10-GW class XUV attosecond source based on laser driven high harmonic generation in rare gases. The pulse energy of this source largely exceeds other laser driven attosecond sources and is comparable to the pulse energy of femtosecond Free-Electron-Laser (FEL) XUV sources. The measured pulse duration in the attosecond pulse train is 650 ± 80 asec. The uniqueness of the combined high intensity and short pulse duration of the source is evidenced in non-linear XUV-optics experiments. It further advances the implementation of XUV-pump-XUV-probe experiments and enables the investigation of strong field effects in the XUV spectral region.

References

  1. Träger, F. ed. Springer handbook of lasers and optics (Springer, Dordrecht, New York, 2012). - PubMed
  2. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234, https://doi.org/10.1103/RevModPhys.81.163 (2009). - PubMed
  3. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science (New York, N.Y.) 292, 1689–1692, https://doi.org/10.1126/science.1059413 (2001). - PubMed
  4. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 803, https://doi.org/10.1103/PhysRevA.71.011401 (2005). - PubMed
  5. Chini, M., Gilbertson, S., Khan, S. D. & Chang, Z. Characterizing ultrabroadband attosecond lasers. OPTICS EXPRESS 18, 13006–13016, https://doi.org/10.1364/OE.18.013006 (2010). - PubMed
  6. Conference on Lasers and Electro-Optics (CLEO), 2013. 9–14 June 2013, San Jose, CA, USA (IEEE, Piscataway, NJ, 2013). - PubMed
  7. Gruson, V. et al. Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron. Science (New York, N.Y.) 354, 734–738, https://doi.org/10.1126/science.aah5188 (2016). - PubMed
  8. Spanner, M., Bertrand, J. B. & Villeneuve, D. M. In situ attosecond pulse characterization techniques to measure the electromagnetic phase. Phys. Rev. A 94; https://doi.org/10.1103/PhysRevA.94.023825 (2016). - PubMed
  9. Mairesse, Y. et al. High harmonic XUV spectral phase interferometry for direct electric-field reconstruction. Phys. Rev. Lett. 94, 173903, https://doi.org/10.1103/PhysRevLett.94.173903 (2005). - PubMed
  10. Iaconis, C. & Walmsley, I. A. Self-Referencing Spectral Interferometry For Measuring Ultrashort Optical Pulses - Quantum Electronics, IEEE Journal of // Self-referencing spectral interferometry for measuring ultrashort optical pulses. IEEE J. Quantum Electron. 35, 501–509, https://doi.org/10.1109/3.753654 (1999). - PubMed
  11. Eckle, P. et al. Attosecond angular streaking. Nat Phys 4, 565–570, https://doi.org/10.1038/nphys982 (2008). - PubMed
  12. Pedatzur, O. et al. Double-blind holography of attosecond pulses. Nature Photonics 13, 91–95, https://doi.org/10.1038/s41566-018-0308-z (2019). - PubMed
  13. Carpeggiani, P. et al. Vectorial optical field reconstruction by attosecond spatial interferometry. Nature Photon 11, 383–389, https://doi.org/10.1038/nphoton.2017.73 (2017). - PubMed
  14. Constant, E., Taranukhin, V. D., Stolow, A. & Corkum, P. B. Methods for the measurement of the duration of high-harmonic pulses. Phys. Rev. A 56, 3870–3878, https://doi.org/10.1103/PhysRevA.56.3870 (1997). - PubMed
  15. Orfanos, I. et al. Attosecond pulse metrology. APL Photonics 4, 80901, https://doi.org/10.1063/1.5086773 (2019). - PubMed
  16. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807, https://doi.org/10.1038/nature01143 (2002). - PubMed
  17. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632, https://doi.org/10.1038/nature05648 (2007). - PubMed
  18. Goulielmakis, E. et al. Direct measurement of light waves. Science (New York, N.Y.) 305, 1267–1269, https://doi.org/10.1126/science.1100866 (2004). - PubMed
  19. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871, https://doi.org/10.1038/nature03183 (2004). - PubMed
  20. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032, https://doi.org/10.1038/nature06229 (2007). - PubMed
  21. Schultze, M. et al. Delay in photoemission. Science (New York, N.Y.) 328, 1658–1662, https://doi.org/10.1126/science.1189401 (2010). - PubMed
  22. Isinger, M. et al. Photoionization in the time and frequency domain. Science (New York, N.Y.) 358, 893–896, https://doi.org/10.1126/science.aao7043 (2017). - PubMed
  23. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743, https://doi.org/10.1038/nature09212 (2010). - PubMed
  24. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science (New York, N.Y.) 346, 336–339, https://doi.org/10.1126/science.1254061 (2014). - PubMed
  25. Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science (New York, N.Y.) 350, 790–795, https://doi.org/10.1126/science.aab2160 (2015). - PubMed
  26. Beaulieu, S. et al. Attosecond-resolved photoionization of chiral molecules. Science (New York, N.Y.) 358, 1288–1294, https://doi.org/10.1126/science.aao5624 (2017). - PubMed
  27. Tzallas, P., Skantzakis, E., Nikolopoulos, L. A. A., Tsakiris, G. D. & Charalambidis, D. Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics. Nat Phys 7, 781–784, https://doi.org/10.1038/nphys2033 (2011). - PubMed
  28. Carpeggiani, P. A. et al. Disclosing intrinsic molecular dynamics on the 1-fs scale through extreme-ultraviolet pump-probe measurements. Phys. Rev. A 89; https://doi.org/10.1103/PhysRevA.89.023420 (2014). - PubMed
  29. Nabekawa, Y. et al. Sub-10-fs control of dissociation pathways in the hydrogen molecular ion with a few-pulse attosecond pulse train. Nature communications 7, 12835, https://doi.org/10.1038/ncomms12835 (2016). - PubMed
  30. Palacios, A., González-Castrillo, A. & Martín, F. Molecular interferometer to decode attosecond electron-nuclear dynamics. Proceedings of the National Academy of Sciences of the United States of America 111, 3973–3978, https://doi.org/10.1073/pnas.1316762111 (2014). - PubMed
  31. Takahashi, E. J., Lan, P., Mucke, O. D., Nabekawa, Y. & Midorikawa, K. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nature communications 4, 2691, https://doi.org/10.1038/ncomms3691 (2013). - PubMed
  32. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271, https://doi.org/10.1038/nature02091 (2003). - PubMed
  33. Nikolopoulos, L. A. A. et al. Second order autocorrelation of an XUV attosecond pulse train. Physical review letters 94, 113905, https://doi.org/10.1103/PhysRevLett.94.113905 (2005). - PubMed
  34. Nabekawa, Y. et al. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Physical review letters 97, 153904, https://doi.org/10.1103/PhysRevLett.97.153904 (2006). - PubMed
  35. Nabekawa, Y. et al. Conclusive evidence of an attosecond pulse train observed with the mode-resolved autocorrelation technique. Physical review letters 96, 83901, https://doi.org/10.1103/PhysRevLett.96.083901 (2006). - PubMed
  36. Faucher, O. et al. Four-dimensional investigation of the 2nd order volume autocorrelation technique. Appl. Phys. B 97, 505–510, https://doi.org/10.1007/s00340-009-3559-z (2009). - PubMed
  37. Heissler, P. et al. Two-photon above-threshold ionization using extreme-ultraviolet harmonic emission from relativistic laser–plasma interaction. New J. Phys. 14, 43025, https://doi.org/10.1088/1367-2630/14/4/043025 (2012). - PubMed
  38. Kolliopoulos, G. et al. Single-shot autocorrelator for extreme-ultraviolet radiation. J. Opt. Soc. Am. B 31, 926, https://doi.org/10.1364/JOSAB.31.000926 (2014). - PubMed
  39. Kruse, J. E. et al. Inconsistencies between two attosecond pulse metrology methods. A comparative study. Phys. Rev. A 82; https://doi.org/10.1103/PhysRevA.82.021402 (2010). - PubMed
  40. Kobayashi, Y., Sekikawa, T., Nabekawa, Y. & Watanabe, S. 27-fs extreme ultraviolet pulse generation by high-order harmonics. Opt. Lett. 23, 64, https://doi.org/10.1364/OL.23.000064 (1998). - PubMed
  41. Descamps, D., Roos, L., Delfin, C., L’Huillier, A. & Wahlström, C.-G. Two- and three-photon ionization of rare gases using femtosecond harmonic pulses generated in a gas medium. Phys. Rev. A 64, 273, https://doi.org/10.1103/PhysRevA.64.031404 (2001). - PubMed
  42. Sekikawa, T., Ohno, T., Yamazaki, T., Nabekawa, Y. & Watanabe, S. Pulse Compression of a High-Order Harmonic by Compensating the Atomic Dipole Phase. Phys. Rev. Lett. 83, 2564–2567, https://doi.org/10.1103/PhysRevLett.83.2564 (1999). - PubMed
  43. Nabekawa, Y., Hasegawa, H., Takahashi, E. J. & Midorikawa, K. Production of doubly charged helium ions by two-photon absorption of an intense sub-10-fs soft x-ray pulse at 42 eV photon energy. Physical review letters 94, 43001, https://doi.org/10.1103/PhysRevLett.94.043001 (2005). - PubMed
  44. Manschwetus, B. et al. Two-photon double ionization of neon using an intense attosecond pulse train. Phys. Rev. A 93; https://doi.org/10.1103/PhysRevA.93.061402 (2016). - PubMed
  45. Miyamoto, N. et al. Observation of two-photon above-threshold ionization of rare gases by xuv harmonic photons. Physical review letters 93, 83903, https://doi.org/10.1103/PhysRevLett.93.083903 (2004). - PubMed
  46. Sekikawa, T., Katsura, T., Miura, S. & Watanabe, S. Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating. Physical review letters 88, 193902, https://doi.org/10.1103/PhysRevLett.88.193902 (2002). - PubMed
  47. Chatziathanasiou, S. et al. Generation of Attosecond Light Pulses from Gas and Solid State Media. Photonics 4, 26, https://doi.org/10.3390/photonics4020026 (2017). - PubMed
  48. Chen, S., Rever, M., Zhang, P., Theobald, W. & Umstadter, D. Observation of relativistic cross-phase modulation in high-intensity laser-plasma interactions. Physical review. E, Statistical, nonlinear, and soft matter physics 74, 46406, https://doi.org/10.1103/PhysRevE.74.046406 (2006). - PubMed
  49. Gordienko, S., Pukhov, A., Shorokhov, O. & Baeva, T. Relativistic Doppler effect: universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002, https://doi.org/10.1103/PhysRevLett.93.115002 (2004). - PubMed
  50. Bulanov, S. V., Naumova, N. M. & Pegoraro, F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Physics of Plasmas 1, 745–757, https://doi.org/10.1063/1.870766 (1994). - PubMed
  51. Tarasevitch, A., Lobov, K., Wünsche, C. & Linde, Dvonder Transition to the relativistic regime in high order harmonic generation. Phys. Rev. Lett. 98, 103902, https://doi.org/10.1103/PhysRevLett.98.103902 (2007). - PubMed
  52. Jafari, B. & Soofi, H. High bandwidth and responsivity mid-infrared graphene photodetector based on a modified metal-dielectric-graphene architecture. Applied optics 58, 6280–6287, https://doi.org/10.1364/AO.58.006280 (2019). - PubMed
  53. Kahaly, S. et al. Direct observation of density-gradient effects in harmonic generation from plasma mirrors. Physical review letters 110, 175001, https://doi.org/10.1103/PhysRevLett.110.175001 (2013). - PubMed
  54. Thaury, C. et al. Plasma mirrors for ultrahigh-intensity optics. Nat Phys 3, 424–429, https://doi.org/10.1038/nphys595 (2007). - PubMed
  55. Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. Route to intense single attosecond pulses. J. Opt. Soc. Am. B 8, 19, https://doi.org/10.1088/1367-2630/8/1/019 (2006). - PubMed
  56. Nomura, Y. et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nat Phys 5, 124–128, https://doi.org/10.1038/nphys1155 (2008). - PubMed
  57. Heyl, C. M., Arnold, C. L., Couairon, A. & L’Huillier, A. Introduction to macroscopic power scaling principles for high-order harmonic generation. J. Phys. B: At. Mol. Opt. Phys. 50, 13001, https://doi.org/10.1088/1361-6455/50/1/013001 (2017). - PubMed
  58. Seres, J. et al. Coherent superposition of laser-driven soft-X-ray harmonics from successive sources. Nat Phys 3, 878–883, https://doi.org/10.1038/nphys775 (2007). - PubMed
  59. Nayak, A. et al. Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses. Phys. Rev. A 98, 66, https://doi.org/10.1103/PhysRevA.98.023426 (2018). - PubMed
  60. Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nature Photonics 14, 30–36, https://doi.org/10.1038/s41566-019-0549-5 (2020). - PubMed
  61. Constant, E. et al. Optimizing High Harmonic Generation in Absorbing Gases: Model and Experiment. Phys. Rev. Lett. 82, 1668–1671, https://doi.org/10.1103/PhysRevLett.82.1668 (1999). - PubMed
  62. Hergott, J.-F. et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range. Phys. Rev. A 66; https://doi.org/10.1103/PhysRevA.66.021801 (2002). - PubMed
  63. Tzallas, P. et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields. Nat Phys 3, 846–850, https://doi.org/10.1038/nphys747 (2007). - PubMed
  64. Skantzakis, E., Tzallas, P., Kruse, J., Kalpouzos, C. & Charalambidis, D. Coherent continuum extreme ultraviolet radiation in the sub-100-nJ range generated by a high-power many-cycle laser field. Opt. Lett. 34, 1732–1734, https://doi.org/10.1364/OL.34.001732 (2009). - PubMed
  65. Kolliopoulos, G., Carpeggiani, P. A., Rompotis, D., Charalambidis, D. & Tzallas, P. A compact collinear polarization gating scheme for many cycle laser pulses. The Review of scientific instruments 83, 63102, https://doi.org/10.1063/1.4725590 (2012). - PubMed
  66. Dacasa, H. et al. Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics. Opt. Express 27, 2656–2670, https://doi.org/10.1364/OE.27.002656 (2019). - PubMed
  67. Tzallas, P. et al. Time gated ion microscopy of light-atom interactions. J. Opt. 20, 24018, https://doi.org/10.1088/2040-8986/aaa326 (2018). - PubMed
  68. Isinger, M. et al. Accuracy and precision of the RABBIT technique. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 377, 20170475, https://doi.org/10.1098/rsta.2017.0475 (2019). - PubMed
  69. Chatziathanasiou, S., Kahaly, S., Charalambidis, D., Tzallas, P. & Skantzakis, E. Imaging the source of high-harmonics generated in atomic gas media. Opt. Express 27, 9733, https://doi.org/10.1364/OE.27.009733 (2019). - PubMed
  70. He, X. et al. Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications. Phys. Rev. A 79, 888, https://doi.org/10.1103/PhysRevA.79.063829 (2009). - PubMed
  71. Wahlstroem, C.-G. et al. High-order harmonic generation in rare gases with an intense short-pulse laser. Phys. Rev. A 48, 4709–4720, https://doi.org/10.1103/PhysRevA.48.4709 (1993). - PubMed
  72. Quintard, L. et al. Optics-less focusing of XUV high-order harmonics. Science advances 5, eaau7175, https://doi.org/10.1126/sciadv.aau7175 (2019). - PubMed
  73. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132, https://doi.org/10.1103/PhysRevA.49.2117 (1994). - PubMed
  74. Wikmark, H. et al. Spatiotemporal coupling of attosecond pulses. Proceedings of the National Academy of Sciences of the United States of America; https://doi.org/10.1073/pnas.1817626116 (2019). - PubMed
  75. Kühn, S. et al. The ELI-ALPS facility. The next generation of attosecond sources. J. Phys. B: At. Mol. Opt. Phys. 50, 132002, https://doi.org/10.1088/1361-6455/aa6ee8 (2017). - PubMed

Publication Types