Display options
Share it on

Sci Rep. 2020 Mar 06;10(1):4207. doi: 10.1038/s41598-020-61044-9.

Induced Beta Power Modulations during Isochronous Auditory Beats Reflect Intentional Anticipation before Gradual Tempo Changes.

Scientific reports

Emily Graber, Takako Fujioka

Affiliations

  1. Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, 94305, USA. [email protected].
  2. Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, 94305, USA.
  3. Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA.

PMID: 32144306 PMCID: PMC7060226 DOI: 10.1038/s41598-020-61044-9

Abstract

Induced beta-band power modulations in auditory and motor-related brain areas have been associated with automatic temporal processing of isochronous beats and explicit, temporally-oriented attention. Here, we investigated how explicit top-down anticipation before upcoming tempo changes, a sustained process commonly required during music performance, changed beta power modulations during listening to isochronous beats. Musicians' electroencephalograms were recorded during the task of anticipating accelerating, decelerating, or steady beats after direction-specific visual cues. In separate behavioural testing for tempo-change onset detection, such cues were found to facilitate faster responses, thus effectively inducing high-level anticipation. In the electroencephalograms, periodic beta power reductions in a frontocentral topographic component with seed-based source contributions from auditory and sensorimotor cortices were apparent after isochronous beats with anticipation in all conditions, generally replicating patterns found previously during passive listening to isochronous beats. With anticipation before accelerations, the magnitude of the power reduction was significantly weaker than in the steady condition. Between the accelerating and decelerating conditions, no differences were found, suggesting that the observed beta patterns may represent an aspect of high-level anticipation common before both tempo changes, like increased attention. Overall, these results indicate that top-down anticipation influences ongoing auditory beat processing in beta-band networks.

References

  1. Huron, D. Expectation in Time. In Sweet Anticipation; Music and the Psychology of Expectation 175–202 (MIT Press, 2006). - PubMed
  2. Bhatara, A., Tirovolas, A. K., Duan, L. M., Levy, B. & Levitin, D. J. Perception of emotional expression in musical performance. J. Exp. Psychol. Hum. Percept. Perform. 37, 921–934 (2011). - PubMed
  3. Palmer, C. Mapping Musical Thought to Musical Performance. J. Exp. Psychol. Hum. Percept. Perform. 15, 331–346 (1989). - PubMed
  4. Juslin, P. N. & Madison, G. The Role of Timing Patterns in Recognition of Emotional Expression from Musical Performance. Music Percept. An Interdiscip. J. 17, 197–221 (1999). - PubMed
  5. Penel, A. & Drake, C. Timing variations in music performance: Musical communication, perceptual compensation, and/or motor control? Percept. Psychophys. 66, 545–562 (2004). - PubMed
  6. Pecenka, N. & Keller, P. E. The role of temporal prediction abilities in interpersonal sensorimotor synchronization. Exp. Brain Res. 211, 505–515 (2011). - PubMed
  7. Breska, A. & Deouell, L. Y. When Synchronizing to Rhythms Is Not a Good Thing: Modulations of Preparatory and Post-Target Neural Activity When Shifting Attention Away from On-Beat Times of a Distracting Rhythm. J. Neurosci. 36, 7154–7166 (2016). - PubMed
  8. Fujioka, T., Trainor, L. J., Large, E. W. & Ross, B. Internalized Timing of Isochronous Sounds Is Represented in Neuromagnetic Beta Oscillations. J. Neurosci. 32, 1791–1802 (2012). - PubMed
  9. Iversen, J. R., Repp, B. H. & Patel, A. D. Top-Down Control of Rhythm Perception Modulates Early Auditory Responses. Ann. N. Y. Acad. Sci. 1169, 58–73 (2009). - PubMed
  10. Doelling, K. B. & Poeppel, D. Cortical entrainment to music and its modulation by expertise. Proc. Natl. Acad. Sci. E6233–E6242, https://doi.org/10.1073/pnas.1508431112 (2015) - PubMed
  11. Todorovic, A., Schoffelen, J., Ede, F. Van, Maris, E. & Lange, F. Pde Temporal Expectation and Attention Jointly Modulate Auditory Oscillatory Activity in the Beta Band. PLoS One 10, 1–16 (2015). - PubMed
  12. Fujioka, T., Ross, B. & Trainor, L. J. Beta-Band Oscillations Represent Auditory Beat and Its Metrical Hierarchy in Perception and Imagery. J. Neurosci. 35, 15187–15198 (2015). - PubMed
  13. Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999). - PubMed
  14. Kilavik, B. E., Zaepffel, M., Brovelli, A., Mackay, W. A. & Riehle, A. The ups and downs of beta oscillations in sensorimotor cortex. Exp. Neurol. 245, 15–26 (2013). - PubMed
  15. Meijer, D., Woerd, Ete & Praamstra, P. Timing of beta oscillatory synchronization and temporal prediction of upcoming stimuli. Neuroimage 138, 233–241 (2016). - PubMed
  16. Arnal, L. H., Doelling, K. B. & Poeppel, D. Delta-Beta Coupled Oscillations Underlie Temporal Prediction Accuracy. Cereb. Cortex 25, 3077–3085 (2014). - PubMed
  17. Saleh, M., Reimer, J., Penn, R., Ojakangas, C. L. & Hatsopoulos, N. G. Fast and Slow Oscillations in Human Primary Motor Cortex Predict Oncoming Behaviorally Relevant Cues. Neuron 65, 461–471 (2010). - PubMed
  18. Kilavik, B. E. & Riehle, A. Timing structures’ neuronal activity during preparation for action. In Attention and Time (eds. Nobre, A. C. & Coull, J.) 257–271 (Oxford University Press, 2010), https://doi.org/10.1093/acprof - PubMed
  19. Tzagarakis, C., Ince, N. F., Leuthold, A. C. & Pellizzer, G. Beta-Band Activity during Motor Planning Reflects Response Uncertainty. J. Neurosci. 30, 11270–11277 (2010). - PubMed
  20. Chang, A., Bosnyak, D. J. & Trainor, L. J. Unpredicted pitch modulates beta oscillatory power during rhythmic entrainment to a tone sequence. Front. Psychol. 7, 1–13 (2016). - PubMed
  21. Morillon, B. & Baillet, S. Motor origin of temporal predictions in auditory attention. Proc. Natl. Acad. Sci. E8913–E8921 (2017). - PubMed
  22. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854 (2008). - PubMed
  23. Grahn, J. A. & Brett, M. Rhythm and Beat Perception in Motor Areas of the Brain. J. Cogn. Neurosci. 19, 893–906 (2007). - PubMed
  24. Schubotz, R. I., Friederici, A. D. & Yves Von Cramon, D. Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. Neuroimage 11, 1–12 (2000). - PubMed
  25. Thaut, M., Trimarchi, P. & Parsons, L. Human Brain Basis of Musical Rhythm Perception: Common and Distinct Neural Substrates for Meter, Tempo, and Pattern. Brain Sci. 4, 428–452 (2014). - PubMed
  26. Keller, P. E. Joint Action in Music Performance. In Enacting Intersubjectivity: A Cognitive and Social Perspective on the Study of Interactions (eds. Morganti, F., Carassa, A. & Riva, G.) 205–221 (IOS Press, 2008). - PubMed
  27. Rasch, R. A. R. Synchronization in performed ensemble music. Acustica 43, 121–131 (1979). - PubMed
  28. Drake, C., Penel, A. & Bigand, E. Tapping in Time with Mechanically and Expressively Performed Music. Music Percept. 18, 1–23 (2000). - PubMed
  29. Graber, E. & Fujioka, T. Endogenous Expectations for Sequence Continuation after Auditory Beat Accelerations and Decelerations Revealed by P3a and Induced Beta-Band Responses. Neuroscience 413, 11–21 (2019). - PubMed
  30. Picton, T. et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 37, 127–152 (2000). - PubMed
  31. Picton, T. W. Human Auditory Evoked Potentials. (Plural Publishing Inc., 2011). - PubMed
  32. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011(879716), 1–13 (2011). - PubMed
  33. Harner, R. N. Singular Value Decomposition-A general linear model for analysis of multivariate structure in the electroencephalogram. Brain Topogr. 3, 43–47 (1990). - PubMed
  34. Lagerlund, T. D., Sharbrough, F. W. & Busacker, N. E. Spatial Filtering of Multichannel Electroencephalographic Recordings Through Principal Component Analysis by Singular Value Decomposition. J. Clin. Neurophysiol. 14, 73–82 (1997). - PubMed
  35. Salmelin, R. et al. Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage 2, 237–243 (1995). - PubMed
  36. Bai, O. et al. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG. Clin. Neurophysiol. 118, 2637–2655 (2007). - PubMed
  37. Bernat, E. M., Williams, W. J. & Gehring, W. J. Decomposing ERP time-frequency energy using PCA. Clin. Neurophysiol. 116, 1314–1334 (2005). - PubMed
  38. De Cheveigné, A., Edeline, J. M., Gaucher, Q. & Gourévitch, B. Component analysis reveals sharp tuning of the local field potential in the guinea pig auditory cortex. J. Neurophysiol. 109, 261–272 (2013). - PubMed
  39. Makeig, S. & Onton, J. ERP Features and EEG Dynamics: An ICA Perspective. In The Oxford Handbook of Event-Related Potential Components (eds. Kappenman, E. S. & Luck, S. J.) 1–53 (Oxford Handbooks Online, 2012). - PubMed
  40. Miwakeichi, F. et al. Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis. Neuroimage 22, 1035–1045 (2004). - PubMed
  41. Mørup, M., Hansen, L. K., Herrmann, C. S., Parnas, J. & Arnfred, S. M. Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG. Neuroimage 29, 938–947 (2006). - PubMed
  42. Rahman, M. A., Khanam, F., Hossain, M. K., Alam, M. K. & Ahmad, M. Four-class motor imagery EEG signal classification using PCA, wavelet and two-stage neural network. Int. J. Adv. Comput. Sci. Appl. 10, 481–490 (2019). - PubMed
  43. Crottaz-Herbette, S. & Menon, V. Where and When the Anterior Cingulate Cortex Modulates Attentional Response: Combined fMRI and ERP Evidence. J. Cogn. Neurosci. 18, 766–780 (2006). - PubMed
  44. Heinze, H. J. et al. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372, 543–546 (1994). - PubMed
  45. Opitz, B., Mecklinger, A., Friederici, A. D. & Von Cramon, D. Y. The functional neuroanatomy of novelty processing: Integrating ERP and fMRI results. Cereb. Cortex 9, 379–391 (1999). - PubMed
  46. Peirce, J. W. PsychoPy-Psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007). - PubMed
  47. Coull, J. T. & Nobre, A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18, 7426–35 (1998). - PubMed
  48. Barnes, R. & Jones, M. R. Expectancy, attention, and time. Cogn. Psychol. 41, 254–311 (2000). - PubMed
  49. Drake, C. & Botte, M.-C. Tempo sensitivity in auditory sequences: Evidence for a multiple-look model. Percept. Psychophys. 54, 277–286 (1993). - PubMed
  50. Friberg, A. & Sundberg, J. Time discrimination in a monotonic, isochronous sequence. J. Acoust. Soc. Am. 98, 2524–2531 (1995). - PubMed
  51. McAuley, J. D. & Jones, M. R. Modeling effects of rhythmic context on perceived duration: a comparison of interval and entrainment approaches to short-interval timing. J. Exp. Psychol. Hum. Percept. Perform. 29, 1102–1125 (2003). - PubMed
  52. Niemi, P. & Näätänen, R. Foreperiod and Simple Reaction Time. Psychol. Bull. 89, 133–162 (1981). - PubMed
  53. Nobre, A., Correa, A. & Coull, J. The hazards of time. Curr. Opin. Neurobiol. 17, 465–470 (2007). - PubMed
  54. Grondin, S. & Laforest, M. Discriminating the tempo variations of a musical excerpt. Acoust. Sci. Techn. 25, 159–162 (2004). - PubMed
  55. Hibi, S. Rhythm perception in repetitive sound sequence. J. Acoust. Soc. Japan 4, 83–95 (1983). - PubMed
  56. Madison, G. Detection of linear temporal drift in sound sequences: Empirical data and modelling principles. Acta Psychol. (Amst). 117, 95–118 (2004). - PubMed
  57. Vos, P. G., Assen, Mvan & Franek, M. Perceived tempo change is dependent on base tempo and direction of change: Evidence for a generalized version of Schulze’s (1978) internal beat model. Psychol. Res. 59, 240–247 (1997). - PubMed
  58. Feldman, J., Epstein, D. & Richards, W. Force Dynamics of Tempo Change in Music. Music Percept. An Interdiscip. J. 10, 185–203 (1992). - PubMed
  59. Fujioka, T., Trainor, L. J., Large, E. W. & Ross, B. Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann. N. Y. Acad. Sci. 1169, 89–92 (2009). - PubMed
  60. Doelling, K. B., Arnal, L. H., Ghitza, O. & Poeppel, D. Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. Neuroimage 85, 761–768 (2014). - PubMed
  61. Engel, A. K. & Fries, P. Beta-band oscillations - signalling the status quo? Curr. Opin. Neurobiol. 20, 156–165 (2010). - PubMed
  62. Androulidakis, A. G. et al. Anticipatory changes in beta synchrony in the human corticospinal system and associated improvements in task performance. Eur. J. Neurosci. 25, 3758–3765 (2007). - PubMed
  63. Zaepffel, M., Trachel, R., Kilavik, B. E. & Brochier, T. Modulations of EEG Beta Power during Planning and Execution of Grasping Movements. PLoS One 8, e60060 (2013). - PubMed
  64. Tzagarakis, C., West, S. & Pellizzer, G. Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band. Front. Neurosci. 9, Article 246 (2015). - PubMed
  65. van Ede, F., Jensen, O. & Maris, E. Tactile expectation modulates pre-stimulus beta-band oscillations in human sensorimotor cortex. Neuroimage 51, 867–876 (2010). - PubMed
  66. Bardouille, T., Picton, T. W. & Ross, B. Attention modulates beta oscillations during prolonged tactile stimulation. Eur. J. Neurosci. 31, 761–769 (2010). - PubMed
  67. Brinkman, L., Stolk, A., Dijkerman, H. C., Lange, F. P. D. & Toni, I. Distinct Roles for Alpha- and Beta-Band Oscillations during Mental Simulation of Goal-Directed Actions. J. Neurosci. 34, 14783–14792 (2014). - PubMed
  68. Desain, P. & Honing, H. Single trial ERP allows Detection of Perceived and Imagined Rhythm. In Proceedings of the RENCON workshop, International Joint Conference on Artificial Intelligence 1–4 (2003). - PubMed
  69. Herholz, S. C., Lappe, C., Knief, A. & Pantev, C. Imagery mismatch negativity in musicians. Ann. N. Y. Acad. Sci. 1169, 173–177 (2009). - PubMed
  70. Okawa, H., Suefusa, K. & Tanaka, T. Neural Entrainment to Auditory Imagery of Rhythms. Front. Hum. Neurosci. 11, 1–11 (2017). - PubMed
  71. Praamstra, P., Kourtis, D., Kwok, H. F. & Oostenveld, R. Neurophysiology of Implicit Timing in Serial Choice Reaction-Time Performance. J. Neurosci. 26, 5448–5455 (2006). - PubMed
  72. Breska, A. & Deouell, L. Y. Automatic Bias of Temporal Expectations following Temporally Regular Input Independently of High-level Temporal Expectation. J. Cogn. Neurosci. 26, 1555–1571 (2014). - PubMed
  73. Arnal, L. H. & Giraud, A.-L. Cortical oscillations and sensory predictions. Trends Cogn. Sci. 16, 390–398 (2012). - PubMed
  74. Engel, A. K., Fries, P. & Singer, W. Dynamic Predictions: Oscillations and Synchrony in Top-Down Processing. Nat. Rev. Neurosci. 2, 704–716 (2001). - PubMed
  75. Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. B 360, 815–836 (2005). - PubMed
  76. Iversen, J. R. & Balasubramaniam, R. Synchronization and temporal processing. Curr. Opin. Behav. Sci. 8, 175–180 (2016). - PubMed
  77. Jones, M. R. & Boltz, M. Dynamic attending and responses to time. Psychol. Rev. 96, 459–491 (1989). - PubMed
  78. Large, E. W. & Jones, M. R. The Dynamics of Attending: How People Track Time-Varying Events. Psychol. Rev. 106, 119–159 (1999). - PubMed
  79. Large, E. W., Herrera, J. A. & Velasco, M. J. Neural Networks for Beat Perception in Musical Rhythm. Front. Syst. Neurosci. 9, 159 (2015). - PubMed
  80. Pecenka, N., Engel, A. & Keller, P. E. Neural correlates of auditory temporal predictions during sensorimotor synchronization. Front. Hum. Neurosci. 7, 1–16 (2013). - PubMed
  81. Schall, J. D. Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2, 33–42 (2001). - PubMed
  82. van der Steen, M. C., Jacoby, N., Fairhurst, M. T. & Keller, P. E. Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation. Brain Res. 1626, 66–87 (2015). - PubMed

Publication Types