Display options
Share it on

J Sep Sci. 2020 May;43(9):1854-1866. doi: 10.1002/jssc.202000035. Epub 2020 Mar 16.

3D Printing in analytical sample preparation.

Journal of separation science

Feng Li, Melisa Rodas Ceballos, Sepideh Keshan Balavandy, Jingxi Fan, Mohammad Mahdi Khataei, Yadollah Yamini, Fernando Maya

Affiliations

  1. Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
  2. Department of Chemistry, Tarbiat Modares University, Tehran, Iran.

PMID: 32056373 DOI: 10.1002/jssc.202000035

Abstract

In the last 5 years, additive manufacturing (three-dimensional printing) has emerged as a highly valuable technology to advance the field of analytical sample preparation. Three-dimensional printing enabled the cost-effective and rapid fabrication of devices for sample preparation, especially in flow-based mode, opening new possibilities for the development of automated analytical methods. Recent advances involve membrane-based three-dimensional printed separation devices fabricated by print-pause-print and multi-material three-dimensional printing, or improved three-dimensional printed holders for solid-phase extraction containing sorbent bead packings, extraction disks, fibers, and magnetic particles. Other recent developments rely on the direct three-dimensional printing of extraction sorbents, the functionalization of commercial three-dimensional printable resins, or the coating of three-dimensional printed devices with functional micro/nanomaterials. In addition, improved devices for liquid-liquid extraction such as extraction chambers, or phase separators are opening new possibilities for analytical method development combined with high-performance liquid chromatography. The present review outlines the current state-of-the-art of three-dimensional printing in analytical sample preparation.

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: 3D printing; liquid-liquid extraction; membrane separation; sample preparation; solid-phase extraction

References

  1. Alexovič, M., Horstkotte, B., Šrámková, I., Solich, P., Sabo, J., Automation of dispersive liquid-liquid microextraction and related techniques. Approaches based on flow, batch, flow-batch and in-syringe modes. Trends Anal. Chem. 2017, 86, 39-55. - PubMed
  2. Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerdà, V., Solid-phase extraction of organic compounds: a critical review. Part II. Trends Anal. Chem. 2016, 80, 655-667. - PubMed
  3. Piri-Moghadam, H., Ahmadi, F., Pawliszyn, J., A critical review of solid phase microextraction for analysis of water samples. Trends Anal. Chem. 2016, 85, 133-143. - PubMed
  4. Maya, F., Cabello, C.P., Frizzarin, R. M., Estela, J. M., Palomino, G.T., Cerdà, V., Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. Trends Anal. Chem. 2017, 90, 142-152. - PubMed
  5. Calderilla, C., Maya, F., Leal, L. O., Cerdà, V., Recent advances in flow-based automated solid-phase extraction. Trends Anal. Chem. 2018, 108, 370-380. - PubMed
  6. Maya, F., Cabello, C. P., Ghani, M., Palomino, G. T., Cerdà, V., Emerging materials for sample preparation. J. Sep. Sci. 2018, 41, 262-287. - PubMed
  7. Płotka-Wasylka, J., Szczepańska, N., de la Guardia, M., Namieśnik, J., Modern trends in solid phase extraction: new sorbent media. Trends Anal. Chem. 2016, 77, 23-43. - PubMed
  8. Maciel, E. V. S., de Toffoli, A. L., Neto, E. S., Nazario, C. E. D., Lanças, F. M., New materials in sample preparation: recent advances and future trends. Trends Anal. Chem. 2019, 119, 115633. - PubMed
  9. Shishov, A., Bulatov, A., Locatelli, M., Carradori, S., Andruch, V., Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J. 2017, 135, 33-38. - PubMed
  10. Clark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A., Anderson, J. L., Magnetic ionic liquids in analytical chemistry: a review. Anal. Chim. Acta 2016, 934, 9-21. - PubMed
  11. Maya, F., Horstkotte, B., Estela, J. M., Cerdà, V., Automated in-syringe dispersive liquid-liquid microextraction. Trends Anal. Chem. 2014, 59, 1-8. - PubMed
  12. Alexovič, M., Horstkotte, B., Solich, P., Sabo, J., Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: approaches based on extractant drop-, plug-, film- and microflow-formation. Anal. Chim. Acta 2016, 906, 22-40. - PubMed
  13. Alexovič, M., Horstkotte, B., Solich, P., Sabo, J., Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: approaches based on impregnated membranes and porous supports. Anal. Chim. Acta 2016, 907, 18-30. - PubMed
  14. Gupta, V., Nesterenko, P., Paull, B., 3D Printing in Chemical Sciences. The Royal Society of Chemistry, London, UK 2019. - PubMed
  15. Gross, B., Lockwood, S. Y., Spence, D. M., Recent advances in analytical chemistry by 3D printing. Anal. Chem. 2017, 89, 57-70. - PubMed
  16. Sandron, S., Heery, B., Gupta, V., Collins, D. A., Nesterenko, E. P., Nesterenko, P. N., Talebi, M., Beirne, S., Thompson, F., Wallace, G. G., Brabazon, D., Regan, F., Paull, B., 3D printed metal columns for capillary liquid chromatography. Analyst 2014, 139, 6343-6347. - PubMed
  17. Gupta, V., Beirne, S., Nesterenko, P. N., Paull, B., Investigating the effect of column geometry on separation efficiency using 3D printed liquid chromatographic columns containing polymer monolithic phases. Anal. Chem. 2018, 90, 1186-1194. - PubMed
  18. Fee, C., Nawada, S., Dimartino, S., 3D printed porous media columns with fine control of column packing morphology. J. Chromatogr. A 2014, 1333, 18-24. - PubMed
  19. Macdonald, N. P., Currivan, S. A., Tedone, L., Paull, B., Direct production of microstructured surfaces for planar chromatography using 3D printing. Anal. Chem. 2017, 89, 2457-2463. - PubMed
  20. Lam, S. C., Gupta, V., Haddad, P. R., Paull, B., 3D printed liquid cooling interface for a deep-UV-LED-based flow-through absorbance detector. Anal. Chem. 2019, 91, 8795-8800. - PubMed
  21. Cecil, F., Guijt, R. M., Henderson, A., Macka, M., Breadmore, M. C., One step multi-material 3D printing for the fabrication of a photometric detector flow cell. Anal. Chim. Acta 2020, 1097, 127-134. - PubMed
  22. Rusling, J. F., Developing microfluidic sensing devices using 3D printing. ACS Sensors 2018, 3, 522-526. - PubMed
  23. Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B., Breadmore, M. C., 3D printed microfluidic devices: enablers and barriers. Lab Chip 2016, 16, 1993-2013. - PubMed
  24. Li, F., Macdonald, N. P., Guijt, R. M., Breadmore, M. C., Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip 2019, 19, 35-49. - PubMed
  25. Kataoka, É. M., Murer, R. C., Santos, J. M., Carvalho, R. M., Eberlin, M. N., Augusto, F., Poppi, R. J., Gobbi, A. L., Hantao, L. W., Simple, expendable, 3D-printed microfluidic systems for sample preparation of petroleum. Anal. Chem. 2017, 89, 3460-3467. - PubMed
  26. Su, C. K., Peng, P. J., Sun, Y. C., Fully 3D-printed preconcentrator for selective extraction of trace elements in seawater. Anal. Chem. 2015, 87, 6945-6950. - PubMed
  27. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D., 3D printing of polymer matrix composites: a review and prospective. Compos. Part B Eng. 2017, 110, 442-458. - PubMed
  28. Kotz, F., Arnold, K., Bauer, W., Schild, D., Keller, N., Sachsenheimer, K., Nargang, T. M., Richter, C., Helmer, D., Rapp, B. E., Three-dimensional printing of transparent fused silica glass. Nature 2017, 544, 337. - PubMed
  29. Waheed, S., Cabot, J. M., Smejkal, P., Farajikhah, S., Sayyar, S., Innis, P. C., Beirne, S., Barnsley, G., Lewis, T. W., Breadmore, M. C., Paull, B., Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer. ACS Appl. Mater. Interfaces 2019, 11, 4353-4363. - PubMed
  30. Mattio, E., Robert-Peillard, F., Branger, C., Puzio, K., Margaillan, A., Brach-Papa, C., Knoery, J., Boudenne, J.-L., Coulomb, B., 3D-printed flow system for determination of lead in natural waters. Talanta 2017, 168, 298-302. - PubMed
  31. Medina, D. A. V., Santos-Neto, Á. J., Cerdà, V., Maya, F., Automated dispersive liquid-liquid microextraction based on the solidification of the organic phase. Talanta 2018, 189, 241-248. - PubMed
  32. Li, F., Smejkal, P., Macdonald, N. P., Guijt, R. M., Breadmore, M. C., One-step fabrication of a microfluidic device with an integrated membrane and embedded reagents by multimaterial 3D printing. Anal. Chem. 2017, 89, 4701-4707. - PubMed
  33. Kalsoom, U., Nesterenko, P. N., Paull, B., Current and future impact of 3D printing on the separation sciences. Trends Anal. Chem. 2018, 105, 492-502. - PubMed
  34. Salmean, C., Dimartino, S., 3D-printed stationary phases with ordered morphology: state of the art and future development in liquid chromatography. Chromatographia 2019, 82, 443-463. - PubMed
  35. Cocovi-Solberg, D. J., Worsfold, P. J., Miró, M., Opportunities for 3D printed millifluidic platforms incorporating on-line sample handling and separation. Trends Anal. Chem. 2018, 108, 13-22. - PubMed
  36. Kalsoom, U., Hasan, C. K., Tedone, L., Desire, C., Li, F., Breadmore, M. C., Nesterenko, P. N., Paull, B., Low-cost passive sampling device with integrated porous membrane produced using multimaterial 3D printing. Anal. Chem. 2018, 90, 12081-12089. - PubMed
  37. Tan, M. L., Zhang, M., Li, F., Maya, F., Breadmore, M. C., A three-dimensional printed electromembrane extraction device for capillary electrophoresis. J. Chromatogr. A 2019, 1595, 215-220. - PubMed
  38. Li, F., Macdonald, N. P., Guijt, R. M., Breadmore, M. C., Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids. Anal. Chem. 2019, 91, 1758-1763. - PubMed
  39. Yuen, P. K., Embedding objects during 3D printing to add new functionalities. Biomicrofluidics 2016, 10, 44104. - PubMed
  40. Pinger, C. W., Heller, A. A., Spence, D. M., A printed equilibrium dialysis device with integrated membranes for improved binding affinity measurements. Anal. Chem. 2017, 89, 7302-7306. - PubMed
  41. Anderson, K. B., Lockwood, S. Y., Martin, R. S., Spence, D. M., A 3D printed fluidic device that enables integrated features. Anal. Chem. 2013, 85, 5622-5626. - PubMed
  42. Lockwood, S. Y., Meisel, J. E., Monsma, F. J., Spence, D. M., A diffusion-based and dynamic 3D-printed device that enables parallel in vitro pharmacokinetic profiling of molecules. Anal. Chem. 2016, 88, 1864-1870. - PubMed
  43. Kim, Y. T., Bohjanen, S., Bhattacharjee, N., Folch, A., Partitioning of hydrogels in 3D-printed microchannels. Lab Chip 2019, 19, 3086-3093. - PubMed
  44. Su, C.-K., Chen, Y.-T., Sun, Y.-C., Speciation of trace iron in environmental water using 3D-printed minicolumns coupled with inductively coupled plasma mass spectrometry. Microchem. J. 2019, 146, 835-841. - PubMed
  45. Su, C.-K., Chen, W.-C., 3D-printed, TiO2 NP-incorporated minicolumn coupled with ICP-MS for speciation of inorganic arsenic and selenium in high-salt-content samples. Microchim. Acta 2018, 185, 268. - PubMed
  46. Belka, M., Ulenberg, S., Bączek, T., Fused deposition modeling enables the low-cost fabrication of porous, customized-shape sorbents for small-molecule extraction. Anal. Chem. 2017, 89, 4373-4376. - PubMed
  47. Konieczna, L., Belka, M., Okońska, M., Pyszka, M., Bączek, T., New 3D-printed sorbent for extraction of steroids from human plasma preceding LC-MS analysis. J. Chromatogr. A 2018, 1545, 1-11. - PubMed
  48. Belka, M., Konieczna, L., Okońska, M., Pyszka, M., Ulenberg, S., Bączek, T., Application of 3D-printed scabbard-like sorbent for sample preparation in bioanalysis expanded to 96-wellplate high-throughput format. Anal. Chim. Acta 2019, 1081, 1-5. - PubMed
  49. Mattio, E., Robert-Peillard, F., Vassalo, L., Branger, C., Margaillan, A., Brach-Papa, C., Knoery, J., Boudenne, J.-L., Coulomb, B., 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water. Talanta 2018, 183, 201-208. - PubMed
  50. Cocovi-Solberg, D. J., Rosende, M., Michalec, M., Miró, M., 3D printing: the second dawn of lab-on-valve fluidic platforms for automatic (bio)chemical assays. Anal. Chem. 2019, 91, 1140-1149. - PubMed
  51. Hagen, D. F., Markell, C. G., Schmitt, G. A., Blevins, D. D., Membrane approach to solid-phase extractions. Anal. Chim. Acta 1990, 236, 157-164. - PubMed
  52. Pons, C., Forteza, R., Cerdà, V., The use of anion-exchange disks in an optrode coupled to a multi-syringe flow-injection system for the determination and speciation analysis of iron in natural water samples. Talanta 2005, 66, 210-217. - PubMed
  53. Maya, F., Estela, J. M., Cerda, V., Interfacing on-line solid phase extraction with monolithic column multisyringe chromatography and chemiluminescence detection: An effective tool for fast, sensitive and selective determination of thiazide diuretics. Talanta 2010, 80, 1333-1340. - PubMed
  54. Ghani, M., Picó, M. F. F., Salehinia, S., Cabello, C. P., Maya, F., Berlier, G., Saraji, M., Cerdà, V., Palomino, G. T., Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. J. Chromatogr. A 2017, 1488, 1-9. - PubMed
  55. Ghani, M., Cabello, C. P., Saraji, M., Estela, J. M., Cerdà, V., Palomino, G. T., Maya, F., Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks. J. Sep. Sci. 2018, 41, 2012-2019. - PubMed
  56. Calderilla, C., Maya, F., Cerdà, V., Leal, L. O., 3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique. Talanta 2017, 175, 463-469. - PubMed
  57. Calderilla, C., Maya, F., Cerdà, V., Leal, L. O., 3D printed device for the automated preconcentration and determination of chromium (VI). Talanta 2018, 184, 15-22. - PubMed
  58. Šrámková, I.H., Carbonell-Rozas, L., Horstkotte, B., Háková, M., Erben, J., Chvojka, J., Švec, F., Solich, P., García-Campaña, A.M., Šatínský, D., Screening of extraction properties of nanofibers in a sequential injection analysis system using a 3D printed device. Talanta 2019, 197, 517-521. - PubMed
  59. Li, N., Jiang, H.-L., Wang, X., Wang, X., Xu, G., Zhang, B., Wang, L., Zhao, R.-S., Lin, J.-M., Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. Trends Anal. Chem. 2018, 102, 60-74. - PubMed
  60. Frizzarin, R. M., Cabello, C.P., Bauzà, M. D. M., Portugal, L. A., Maya, F., Cerdà, V., Estela, J. M., Palomino, G. T., Submicrometric magnetic nanoporous carbons derived from metal-organic frameworks enabling automated electromagnet-assisted online solid-phase extraction. Anal. Chem. 2016, 88, 6990-6995. - PubMed
  61. Wang, H., Cocovi-Solberg, D. J., Hu, B., Miró, M., 3D-printed microflow injection analysis platform for online magnetic nanoparticle sorptive extraction of antimicrobials in biological specimens as a front end to liquid chromatographic assays. Anal. Chem. 2017, 89, 12541-12549. - PubMed
  62. Tascon, M., Singh, V., Huq, M., Pawliszyn, J., Direct coupling of dispersive extractions with magnetic particles to mass spectrometry via microfluidic open interface. Anal. Chem. 2019, 91, 4762-4770. - PubMed
  63. Worawit, C., Cocovi-Solberg, D. J., Varanusupakul, P., Miró, M., In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: A proof of concept study. Talanta 2018, 185, 611-619. - PubMed
  64. Medina, D. A. V., Figuerola, A., Rodriguez, F., Santos-Neto, ÁJ., Cabello, C. P., Palomino, G. T., Cerdà, V., Maya, F., Hyperporous carbon-coated 3D printed devices. Appl. Mater. Today 2019, 14, 29-34. - PubMed
  65. Calderilla, C., Maya, F., Cerdà, V., Leal, L. O., Direct photoimmobilization of extraction disks on “green state” 3D printed devices. Talanta 2019, 202, 67-73. - PubMed
  66. Ceballos, M. R., Serra, F. G., Estela, J. M., Cerdà, V., Ferrer, L., 3D printed resin-coated device for uranium (VI) extraction. Talanta 2019, 196, 510-514. - PubMed
  67. Ceballos, M. R., Estela, J. M., Cerdà, V., Ferrer, L., Flow-through magnetic-stirring assisted system for uranium(VI) extraction: First 3D printed device application. Talanta 2019, 202, 267-273. - PubMed
  68. Figuerola, A., Medina, D. A. V, Santos-Neto, A. J., Cabello, C. P., Cerdà, V., Palomino, G. T., Maya, F., Metal-organic framework mixed-matrix coatings on 3D printed devices. Appl. Mater. Today 2019, 16, 21-27. - PubMed
  69. Mattio, E., Ollivier, N., Robert-Peillard, F., Di Rocco, R., Branger, C., Margaillan, A., Brach-Papa, C., Knoery, J., Bonne, D., Boudenne, J.-L., Coulomb, B., Modified 3D-printed device for mercury determination in waters. Anal. Chim. Acta 2019, 1082, 78-85. - PubMed
  70. Su, C.-K., Yen, S.-C., Li, T.-W., Sun, Y.-C., Enzyme-immobilized 3D-printed reactors for online monitoring of rat brain extracellular glucose and lactate. Anal. Chem. 2016, 88, 6265-6273. - PubMed

Publication Types