Display options
Share it on

Front Microbiol. 2020 Feb 11;11:50. doi: 10.3389/fmicb.2020.00050. eCollection 2020.

Potential Elimination of Human Gut Resistome by Exploiting the Benefits of Functional Foods.

Frontiers in microbiology

Christina Tsigalou, Theocharis Konstantinidis, Elisavet Stavropoulou, Eugenia E Bezirtzoglou, Athanasios Tsakris

Affiliations

  1. Laboratory of Microbiology, Medical School, University Hospital, Democritus University of Thrace, Alexandroupolis, Greece.
  2. Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
  3. Laboratory of Food Science and Technology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece.
  4. Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

PMID: 32117102 PMCID: PMC7026006 DOI: 10.3389/fmicb.2020.00050

Abstract

Recent advances in technology over the last decades have strived to elucidate the diverse and abundant ecosystem of the human microbiome. The intestinal microbiota represents a densely inhabited environment that offers a plethora of beneficial effects to the host's wellbeing. On the other hand, it can serve as a potential reservoir of Multi-Drug Resistant (MDR) bacteria and their antibiotic-resistant genes (ARgenes), which comprise the "gut resistome." ARgenes, like antibiotics, have been omnipresent in the environment for billions of years. In the context of the gut microbiome, these genes may conflate into exogenous MDR or emerge in commensals due to mutations or gene transfers. It is currently generally accepted that Antimicrobial Resistance (AMR) poses a serious threat to public health worldwide. It is of paramount importance that researchers focus on, amongst other parameters, elaborating strategies to manage the gut resistome, particularly focusing on the diminution of AMR. Potential interventions in the gut microbiome field by Fecal Microbiota Transplant (FMT) or functional foods are newly emerged candidates for the uprooting of MDR strains and restoring dysbiosis and resilience. Probiotic nutrition is thought to diminish gut colonization from pathobionts. Yet only a few studies have explored the effects of antibiotics use on the reservoir of AR genes and the demanding time for return to normal by gut microbiota-targeted strategies. Regular administration of probiotic bacteria has recently been linked to restoration of the gut ecosystem and decrease of the gut resistome and AR genes carriers. This review summarizes the latest information about the intestinal resistome and the intriguing methods of fighting against AMR through probiotic-based methods and gut microbial shifts that have been proposed. This study contains some key messages: (1) AMR currently poses a lethal threat to global health, and it is pivotal for the scientific community to do its utmost in fighting against it; (2) human gut microbiome research, within the last decade especially, seems to be preoccupied with the interface of numerous diseases and identifying a potential target for a variety of interventions; (3) the gut resistome, comprised of AR genesis, presents very early on in life and is prone to shifts due to the use of antibiotics or dietary supplements; and (4) future strategies involving functional foods seem promising for the battle against AMR through intestinal resistome diminution.

Copyright © 2020 Tsigalou, Konstantinidis, Stavropoulou, Bezirtzoglou and Tsakris.

Keywords: antimicrobial resistance; antimicrobial resistance genes; gut microbiome; prebiotics; probiotics; resistome

References

  1. J Matern Fetal Neonatal Med. 2020 Mar;33(6):1036-1043 - PubMed
  2. Nat Rev Microbiol. 2007 Mar;5(3):175-86 - PubMed
  3. Philos Trans R Soc Lond B Biol Sci. 2015 Jun 5;370(1670):20140087 - PubMed
  4. Microorganisms. 2019 Jan 10;7(1): - PubMed
  5. Genome Biol. 2012 Jun 14;13(6):R42 - PubMed
  6. PLoS Comput Biol. 2017 Oct 12;13(10):e1005579 - PubMed
  7. Genomics Proteomics Bioinformatics. 2019 Feb;17(1):39-51 - PubMed
  8. Genome Res. 2013 Jul;23(7):1163-9 - PubMed
  9. JAMA. 2018 Aug 7;320(5):499-500 - PubMed
  10. PLoS Comput Biol. 2013;9(1):e1002863 - PubMed
  11. Allergol Int. 2017 Oct;66(4):515-522 - PubMed
  12. Nucleic Acids Res. 2018 Jan 4;46(D1):D749-D753 - PubMed
  13. Science. 2016 Apr 29;352(6285):535-8 - PubMed
  14. Int J Med Microbiol. 2013 Aug;303(6-7):298-304 - PubMed
  15. Appl Environ Microbiol. 2011 Oct;77(20):7134-41 - PubMed
  16. Nat Commun. 2013;4:2151 - PubMed
  17. Dtsch Tierarztl Wochenschr. 2001 Jun;108(6):246-8 - PubMed
  18. Nature. 1978 Jul 13;274(5667):181-2 - PubMed
  19. Anaerobe. 2011 Dec;17(6):369-74 - PubMed
  20. Clin Nutr. 2018 Dec;37(6 Pt A):2191-2197 - PubMed
  21. J Antimicrob Chemother. 2003 May;51(5):1317-9 - PubMed
  22. Front Microbiol. 2018 Sep 21;9:2066 - PubMed
  23. Front Pediatr. 2017 May 24;5:111 - PubMed
  24. Microbiol Spectr. 2016 Apr;4(2): - PubMed
  25. Sci Rep. 2018 Jul 25;8(1):11192 - PubMed
  26. Science. 2019 Sep 6;365(6457):984-985 - PubMed
  27. Mol Microbiol. 2002 Nov;46(3):601-10 - PubMed
  28. Front Pediatr. 2019 Feb 27;7:47 - PubMed
  29. Nature. 2019 Aug;572(7769):329-334 - PubMed
  30. Gut. 2008 Nov;57(11):1605-15 - PubMed
  31. Pediatr Res. 2017 Nov;82(5):829-838 - PubMed
  32. Sci Rep. 2016 Apr 05;6:24030 - PubMed
  33. Biochem J. 2017 May 16;474(11):1823-1836 - PubMed
  34. Nat Commun. 2018 Sep 24;9(1):3891 - PubMed
  35. Sci Transl Med. 2014 May 21;6(237):237ra65 - PubMed
  36. Glycobiology. 2012 Sep;22(9):1147-62 - PubMed
  37. Lett Appl Microbiol. 2007 Oct;45(4):454-60 - PubMed
  38. Am J Respir Crit Care Med. 2007 Mar 15;175(6):561-9 - PubMed
  39. Nat Microbiol. 2016 Mar 07;1:16024 - PubMed
  40. BMJ. 2018 Jun 13;361:k2179 - PubMed
  41. Nutrients. 2018 Feb 28;10(3): - PubMed
  42. J Antimicrob Chemother. 2014 Aug;69(8):2215-23 - PubMed
  43. J Nutr. 1995 Jun;125(6):1401-12 - PubMed
  44. Cell Host Microbe. 2015 Jun 10;17(6):852 - PubMed
  45. Front Microbiol. 2015 Oct 06;6:1050 - PubMed
  46. Nat Rev Microbiol. 2005 Sep;3(9):722-32 - PubMed
  47. J Anim Sci. 2003 Oct;81(10):2535-45 - PubMed
  48. Eur J Clin Microbiol Infect Dis. 2017 May;36(5):757-769 - PubMed
  49. Front Microbiol. 2016 Jan 12;6:1543 - PubMed
  50. N Engl J Med. 2009 Jan 1;360(1):20-31 - PubMed
  51. Nature. 2012 Sep 13;489(7415):220-30 - PubMed
  52. Antimicrob Agents Chemother. 1983 May;23(5):784-6 - PubMed
  53. Science. 2006 Jan 20;311(5759):374-7 - PubMed
  54. Gut. 2016 Feb;65(2):330-9 - PubMed
  55. Sci Rep. 2018 Jun 5;8(1):8656 - PubMed
  56. Nature. 2007 Oct 18;449(7164):804-10 - PubMed
  57. BMJ. 2018 Jan 8;360:j5145 - PubMed
  58. PLoS One. 2013 Nov 13;8(11):e78822 - PubMed
  59. Nat Microbiol. 2019 Jan;4(1):112-123 - PubMed
  60. Clin Exp Immunol. 2019 Jan;195(1):74-85 - PubMed
  61. Genes (Basel). 2019 Nov 26;10(12): - PubMed
  62. Int J Endocrinol. 2018 Mar 22;2018:4095789 - PubMed
  63. Microbiome. 2015 Jun 25;3:27 - PubMed
  64. Nat Immunol. 2013 Jul;14(7):676-84 - PubMed
  65. PLoS Biol. 2016 Aug 19;14(8):e1002533 - PubMed
  66. J Dev Orig Health Dis. 2016 Feb;7(1):35-44 - PubMed
  67. Front Pediatr. 2018 Nov 16;6:347 - PubMed
  68. Nature. 2011 May 12;473(7346):174-80 - PubMed
  69. Nat Rev Immunol. 2013 Nov;13(11):790-801 - PubMed
  70. Br J Nutr. 2016 Jul;116(1):94-103 - PubMed
  71. Environ Microbiol. 2014 Sep;16(9):2891-904 - PubMed
  72. J Infect Dis. 1979 Jan;139(1):97-101 - PubMed
  73. Sci Rep. 2015 Oct 28;5:15317 - PubMed
  74. Nat Rev Gastroenterol Hepatol. 2017 Jun;14(6):321-322 - PubMed
  75. EBioMedicine. 2015 Jul 10;2(8):968-84 - PubMed

Publication Types