Display options
Share it on

IUCrJ. 2020 Feb 01;7:228-237. doi: 10.1107/S2052252519017287. eCollection 2020 Mar 01.

Crystal twinning of bicontinuous cubic structures.

IUCrJ

Lu Han, Nobuhisa Fujita, Hao Chen, Chenyu Jin, Osamu Terasaki, Shunai Che

Affiliations

  1. School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China.
  2. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
  3. JST, PRESTO, Saitama 332-0012, Japan.
  4. Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen, Lotzestr. 16-18, Göttingen 37083, Germany.
  5. Max Planck Institute for Dynamics and Self-Organisation, Am Faßberg 17, Göttingen 37077, Germany.
  6. Centre for High-resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.
  7. Department of Materials and Environmental Chemistry, Stockholm University, Stockholm S-10691, Sweden.
  8. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

PMID: 32148851 PMCID: PMC7055389 DOI: 10.1107/S2052252519017287

Abstract

Bicontinuous cubic structures in soft matter consist of two intertwining labyrinths separated by a partitioning layer. Combining experiments, numerical modelling and techniques in differential geometry, we investigate twinning defects in bicontinuous cubic structures. We first demonstrate that a twin boundary is most likely to occur at a plane that cuts the partitioning layer almost perpendicularly, so that the perturbation caused by twinning remains minimal. This principle can be used as a criterion to identify potential twin boundaries, as demonstrated through detailed investigations of mesoporous silica crystals characterized by diamond and gyroid surfaces. We then discuss that a twin boundary can result from a stacking fault in the arrangement of inter-lamellar attachments at an early stage of structure formation. It is further shown that enhanced curvature fluctuations near the twin boundary would cost energy because of geometrical frustration, which would be eased by a crystal distortion that is experimentally observed.

© Han et al. 2020.

Keywords: bicontinuous cubic structures; constant mean curvature surfaces; crystal distortions; electron crystallography; inorganic porous solids; twinning defects

References

  1. Phys Rev Lett. 1994 Jul 4;73(1):86-89 - PubMed
  2. J R Soc Interface. 2008 Jan 6;5(18):85-94 - PubMed
  3. Langmuir. 2007 Jun 19;23(13):7276-85 - PubMed
  4. Chem Rev. 2007 Jul;107(7):2821-60 - PubMed
  5. Phys Rev Lett. 2006 Mar 17;96(10):108102 - PubMed
  6. Nat Chem. 2009 May;1(2):123-7 - PubMed
  7. Angew Chem Int Ed Engl. 2006 Jun 26;45(26):4295-8 - PubMed
  8. Z Naturforsch C. 1973 Nov-Dec;28(11):693-703 - PubMed
  9. Angew Chem Int Ed Engl. 2006 Oct 6;45(39):6516-9 - PubMed
  10. Nature. 2000 Nov 23;408(6811):449-53 - PubMed
  11. Interface Focus. 2017 Aug 6;7(4):20160114 - PubMed
  12. FEBS Lett. 1995 Aug 1;369(1):13-7 - PubMed
  13. Curr Opin Struct Biol. 2000 Aug;10(4):486-97 - PubMed
  14. J Am Chem Soc. 2011 Aug 3;133(30):11524-33 - PubMed
  15. Adv Drug Deliv Rev. 2001 Apr 25;47(2-3):229-50 - PubMed
  16. Adv Mater. 2012 Mar 8;24(10):OP23-7 - PubMed
  17. Phys Rev Lett. 2000 Aug 14;85(7):1472-5 - PubMed
  18. Nat Chem. 2012 Jan 29;4(3):188-94 - PubMed
  19. Biochemistry. 1989 May 2;28(9):3692-703 - PubMed
  20. Soft Matter. 2015 Mar 14;11(10):1991-7 - PubMed
  21. Nat Commun. 2015 Nov 17;6:8915 - PubMed
  22. Angew Chem Int Ed Engl. 2017 Jun 12;56(25):7135-7140 - PubMed
  23. Angew Chem Int Ed Engl. 2010 Nov 15;49(47):8867-71 - PubMed
  24. J Am Chem Soc. 2011 Apr 27;133(16):6106-9 - PubMed
  25. J Chem Phys. 2009 Apr 7;130(13):134712 - PubMed
  26. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):050904 - PubMed

Publication Types