Display options
Share it on

Pharmaceuticals (Basel). 2020 Mar 05;13(3). doi: 10.3390/ph13030041.

Opipramol Inhibits Lipolysis in Human Adipocytes without Altering Glucose Uptake and Differently from Antipsychotic and Antidepressant Drugs with Adverse Effects on Body Weight Control.

Pharmaceuticals (Basel, Switzerland)

Christian Carpéné, Francisco Les, Josep Mercader, Saioa Gomez-Zorita, Jean-Louis Grolleau, Nathalie Boulet, Jessica Fontaine, Mari Carmen Iglesias-Osma, Maria José Garcia-Barrado

Affiliations

  1. Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
  2. I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, France.
  3. Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego Zaragoza, Spain.
  4. Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain.
  5. Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, 07122 Palma, Spain.
  6. Balearic Islands Health Research Institute (IdISBa), 07120 Palma, Spain.
  7. Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 48940 Vitoria, Spain.
  8. Department of Plastic Surgery, CHU Rangueil, 31059 Toulouse, France.
  9. Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, 37007 Salamanca, Spain.
  10. Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain.
  11. Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain.

PMID: 32151075 PMCID: PMC7151722 DOI: 10.3390/ph13030041

Abstract

Treatment with several antipsychotic drugs exhibits a tendency to induce weight gain and diabetic complications. The proposed mechanisms by which the atypical antipsychotic drug olanzapine increases body weight include central dysregulations leading to hyperphagia and direct peripheral impairment of fat cell lipolysis. Several investigations have reproduced in vitro direct actions of antipsychotics on rodent adipocytes, cultured preadipocytes, or human adipose tissue-derived stem cells. However, to our knowledge, no such direct action has been described in human mature adipocytes. The aim of the present study was to compare in human adipocytes the putative direct alterations of lipolysis by antipsychotics (haloperidol, olanzapine, ziprazidone, risperidone), antidepressants (pargyline, phenelzine), or anxiolytics (opipramol). Lipolytic responses to the tested drugs, and to recognized lipolytic (e.g., isoprenaline) or antilipolytic agents (e.g., insulin) were determined, together with glucose transport and amine oxidase activities in abdominal subcutaneous adipocytes from individuals undergoing plastic surgery. None of the tested drugs were lipolytic. Surprisingly, only opipramol exhibited substantial antilipolytic properties in the micromolar to millimolar range. An opipramol antilipolytic effect was evident against isoprenaline-, forskolin-, or atrial natriuretic peptide-stimulated lipolysis. Opipramol did not impair insulin activation of glucose transport but inhibited monoamine oxidase (MAO) activity to the same extent as antidepressants recognized as MAO inhibitors (pargyline, harmine, or phenelzine), whereas antipsychotics were inefficient. Considering its unique properties, opipramol, which is not associated with weight gain in treated patients, is a good candidate for drug repurposing because it limits exaggerated lipolysis, prevents hydrogen peroxide release by amine oxidases in adipocytes, and is thereby of potential use to limit lipotoxicity and oxidative stress, two deleterious complications of diabetes and obesity.

Keywords: adipose tissue; antidepressant; antipsychotic; glucose transport; harmine; insulin; lipotoxicity; monoamine oxidase; obesity; opipramol; phenelzine; semicarbazide-sensitive amine oxidase

Conflict of interest statement

The authors declare that they have no conflict of interest for any aspect of this research.

References

  1. Prog Neuropsychopharmacol Biol Psychiatry. 2006 Jan;30(1):93-8 - PubMed
  2. J Neural Transm (Vienna). 2011 Jul;118(7):1079-89 - PubMed
  3. Chem Biol Interact. 2016 Oct 25;258:115-25 - PubMed
  4. Biochem Biophys Res Commun. 2015 Nov 27;467(4):906-12 - PubMed
  5. Br J Pharmacol. 2004 Oct;143(4):495-507 - PubMed
  6. J Pharmacol Exp Ther. 2001 May;297(2):563-72 - PubMed
  7. Neurochem Int. 2010 Nov;57(5):565-71 - PubMed
  8. Int J Obes (Lond). 2010 Jun;34(6):970-9 - PubMed
  9. Pharmaceuticals (Basel). 2018 May 11;11(2): - PubMed
  10. Jpn J Pharmacol. 1972 Jun;22(3):439-41 - PubMed
  11. Medicines (Basel). 2019 Aug 12;6(3): - PubMed
  12. PLoS One. 2012;7(1):e29270 - PubMed
  13. J Clin Psychopharmacol. 2006 Jun;26(3):232-7 - PubMed
  14. J Clin Invest. 2018 Nov 1;128(11):4997-5007 - PubMed
  15. Int J Mol Sci. 2018 Sep 25;19(10): - PubMed
  16. Arch Biochem Biophys. 1997 Jan 1;337(1):137-42 - PubMed
  17. Biopharm Drug Dispos. 1999 Nov;20(8):369-77 - PubMed
  18. Clin Neuropharmacol. 2019 May/Jun;42(3):77-79 - PubMed
  19. J Physiol Biochem. 2018 Nov;74(4):623-633 - PubMed
  20. J Psychiatry Neurosci. 2000 Nov;25(5):481-96 - PubMed
  21. Mol Pharmacol. 2009 May;75(5):1052-61 - PubMed
  22. J Lipids. 2013;2013:864593 - PubMed
  23. Eur J Pharmacol. 2003 Apr 18;466(3):235-43 - PubMed
  24. Chem Biol Interact. 2019 May 1;304:139-147 - PubMed
  25. Br J Pharmacol. 2018 Sep;175(18):3713-3726 - PubMed
  26. Pharmacol Res. 2006 Jun;53(6):482-91 - PubMed
  27. J Psychopharmacol. 2014 Dec;28(12):1161-9 - PubMed
  28. Ann N Y Acad Sci. 1998 May 15;839:186-9 - PubMed
  29. Medicina (Kaunas). 2019 May 17;55(5): - PubMed
  30. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Dec 1;35(8):1884-90 - PubMed
  31. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Jul 1;44:118-24 - PubMed
  32. J Neural Transm (Vienna). 2013 Jun;120(6):997-1003 - PubMed
  33. Appetite. 2006 May;46(3):254-62 - PubMed
  34. Pharmacol Res. 2007 Sep;56(3):202-8 - PubMed
  35. Br J Pharmacol. 2018 Jun;175(12):2428-2440 - PubMed
  36. Biochem Pharmacol. 1999 Dec 1;58(11):1735-42 - PubMed
  37. Xenobiotica. 1988 Jan;18(1):113-21 - PubMed
  38. Mol Psychiatry. 2005 Dec;10(12):1089-96 - PubMed
  39. Trends Endocrinol Metab. 2008 May-Jun;19(4):130-7 - PubMed
  40. Eur J Pharmacol. 2005 Aug 22;518(2-3):234-42 - PubMed
  41. Medicines (Basel). 2019 Jan 15;6(1): - PubMed
  42. J Pharmacol Exp Ther. 2018 Jun;365(3):526-535 - PubMed
  43. J Pharmacol Exp Ther. 2019 Nov;371(2):555-566 - PubMed
  44. Mol Pharmacol. 2008 Feb;73(2):525-38 - PubMed
  45. Oxid Med Cell Longev. 2016;2016:2427618 - PubMed
  46. Neuropsychopharmacology. 2007 Apr;32(4):765-72 - PubMed
  47. Diabetes Metab. 2018 Jun;44(3):281-291 - PubMed
  48. Pharmacopsychiatry. 2004 Nov;37 Suppl 3:S189-97 - PubMed
  49. Biochem Biophys Res Commun. 2014 Aug 8;450(4):1383-9 - PubMed
  50. World J Diabetes. 2017 Apr 15;8(4):143-153 - PubMed
  51. J Physiol Biochem. 2013 Sep;69(3):585-93 - PubMed
  52. Am J Psychiatry. 1999 Feb;156(2):312-4 - PubMed
  53. Eur Neuropsychopharmacol. 2012 Jan;22(1):17-26 - PubMed
  54. J Pharmacol Exp Ther. 2001 Oct;299(1):96-104 - PubMed
  55. Mol Psychiatry. 2007 Jun;12(6):562-71 - PubMed
  56. Psychoneuroendocrinology. 2019 Dec;110:104445 - PubMed

Publication Types