Display options
Share it on

Front Pharmacol. 2020 Jan 29;10:1653. doi: 10.3389/fphar.2019.01653. eCollection 2019.

A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer's Disease.

Frontiers in pharmacology

Soo Youn Lee, Min-Young Song, Dain Kim, Chaewon Park, Da Kyeong Park, Dong Geun Kim, Jong Shin Yoo, Young Hye Kim

Affiliations

  1. Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea.
  2. Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.

PMID: 32063857 PMCID: PMC7000455 DOI: 10.3389/fphar.2019.01653

Abstract

Numerous clinical trials of drug candidates for Alzheimer's disease (AD) have failed, and computational drug repositioning approaches using omics data have been proposed as effective alternative approaches to the discovery of drug candidates. However, little multi-omics data is available for AD, due to limited availability of brain tissues. Even if omics data exist, systematic drug repurposing study for AD has suffered from lack of big data, insufficient clinical information, and difficulty in data integration on account of sample heterogeneity derived from poor diagnosis or shortage of qualified post-mortem tissue. In this study, we developed a proteotranscriptomic-based computational drug repositioning method named Drug Repositioning Perturbation Score/Class (DRPS/C) based on inverse associations between disease- and drug-induced gene and protein perturbation patterns, incorporating pharmacogenomic knowledge. We constructed a Drug-induced Gene Perturbation Signature Database (DGPSD) comprised of 61,019 gene signatures perturbed by 1,520 drugs from the Connectivity Map (CMap) and the L1000 CMap. Drugs were classified into three DRPCs (High, Intermediate, and Low) according to DRPSs that were calculated using drug- and disease-induced gene perturbation signatures from DGPSD and The Cancer Genome Atlas (TCGA), respectively. The DRPS/C method was evaluated using the area under the ROC curve, with a prescribed drug list from TCGA as the gold standard. Glioblastoma had the highest AUC. To predict anti-AD drugs, DRPS were calculated using DGPSD and AD-induced gene/protein perturbation signatures generated from RNA-seq, microarray and proteomic datasets in the Synapse database, and the drugs were classified into DRPCs. We predicted 31 potential anti-AD drug candidates commonly belonged to high DRPCs of transcriptomic and proteomic signatures. Of these, four drugs classified into the nervous system group of Anatomical Therapeutic Chemical (ATC) system are voltage-gated sodium channel blockers (bupivacaine, topiramate) and monamine oxidase inhibitors (selegiline, iproniazid), and their mechanism of action was inferred from a potential anti-AD drug perspective. Our approach suggests a shortcut to discover new efficacy of drugs for AD.

Copyright © 2020 Lee, Song, Kim, Park, Park, Kim, Yoo and Kim.

Keywords: Alzheimer disease; computational drug repositioning; drug discovery; drug repositioning; proteomics; proteotranscriptomics; system based approach; transcriptomics

References

  1. Nat Commun. 2018 Jan 30;9(1):327 - PubMed
  2. EMBO Mol Med. 2016 Jun 01;8(6):595-608 - PubMed
  3. Nat Commun. 2018 Sep 3;9(1):3561 - PubMed
  4. Nat Commun. 2017 Jul 12;8:16022 - PubMed
  5. FEBS Lett. 2006 Jan 9;580(1):107-14 - PubMed
  6. Dis Chest. 1954 May;25(5):573-9 - PubMed
  7. Neuropsychopharmacology. 2015 Feb;40(3):650-7 - PubMed
  8. Endocrinology. 2012 Sep;153(9):4401-11 - PubMed
  9. Lancet Neurol. 2010 Apr;9(4):413-24 - PubMed
  10. Alzheimers Dement. 2018 Apr;14(4):535-562 - PubMed
  11. Proc Natl Acad Sci U S A. 2011 May 10;108(19):8059-64 - PubMed
  12. N Engl J Med. 1997 Apr 24;336(17):1216-22 - PubMed
  13. J Med Chem. 2012 Oct 11;55(19):8483-92 - PubMed
  14. FEBS Lett. 2011 Jun 23;585(12):1801-6 - PubMed
  15. Pharmacology. 2011;87(3-4):121-9 - PubMed
  16. J Biol Chem. 2008 Dec 5;283(49):33902-10 - PubMed
  17. Biogerontology. 2014 Dec;15(6):547-57 - PubMed
  18. Curr Top Med Chem. 2012;12(20):2275-82 - PubMed
  19. Trends Cardiovasc Med. 2010 Jan;20(1):16-21 - PubMed
  20. Front Pharmacol. 2016 Oct 18;7:340 - PubMed
  21. Hum Genet. 2017 Oct;136(10):1341-1351 - PubMed
  22. Curr Top Med Chem. 2012;12(20):2163-76 - PubMed
  23. PLoS One. 2016 Dec 22;11(12):e0168812 - PubMed
  24. Arch Gen Psychiatry. 1987 May;44(5):427-33 - PubMed
  25. Drug Discov Today. 2014 Nov;19(11):1751-1756 - PubMed
  26. Bioinformatics. 2014 Feb 15;30(4):523-30 - PubMed
  27. Front Neurosci. 2018 Jun 26;12:419 - PubMed
  28. Cell. 2017 Nov 30;171(6):1437-1452.e17 - PubMed
  29. Neurosci Lett. 2004 Jan 30;355(3):169-72 - PubMed
  30. Mol Med Rep. 2014 May;9(5):1533-41 - PubMed
  31. Sci Rep. 2019 Sep 19;9(1):13548 - PubMed
  32. Psychother Psychosom. 2014;83(2):89-105 - PubMed
  33. Oncogene. 2018 Jan 18;37(3):403-414 - PubMed
  34. Nat Neurosci. 2010 Jul;13(7):812-8 - PubMed
  35. Mol Cell. 2012 Aug 24;47(4):535-46 - PubMed
  36. PLoS One. 2011;6(12):e28025 - PubMed
  37. PLoS One. 2014 May 23;9(5):e98185 - PubMed
  38. Local Reg Anesth. 2018 Aug 08;11:35-44 - PubMed
  39. Curr Aging Sci. 2018;11(2):77-89 - PubMed
  40. Cell. 2016 Feb 11;164(4):603-15 - PubMed
  41. J Clin Psychopharmacol. 2008 Jun;28(3):296-301 - PubMed
  42. BMC Cancer. 2019 Jun 25;19(1):628 - PubMed
  43. BMC Neurol. 2016 Nov 22;16(1):236 - PubMed
  44. Sci Adv. 2019 Mar 20;5(3):eaav0316 - PubMed
  45. J Forensic Sci. 1995 Nov;40(6):1100-2 - PubMed
  46. Nat Commun. 2017 Sep 18;8(1):573 - PubMed
  47. Cell Signal. 2004 Feb;16(2):187-200 - PubMed
  48. J Alzheimers Dis Rep. 2018 Dec 14;2(1):213-218 - PubMed
  49. Life Sci. 1989;45(6):525-31 - PubMed
  50. Neurobiol Aging. 2000 Mar-Apr;21(2):343-8 - PubMed
  51. Clin Transl Sci. 2018 Mar;11(2):147-152 - PubMed
  52. Mol Cancer Ther. 2014 Jul;13(7):1929-1941 - PubMed
  53. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21830-5 - PubMed
  54. J Biol Chem. 2011 Mar 11;286(10):8106-16 - PubMed
  55. Neuron. 2012 Jan 26;73(2):374-90 - PubMed
  56. Lancet Neurol. 2012 Oct;11(10):868-77 - PubMed
  57. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 - PubMed
  58. Brief Bioinform. 2011 Jul;12(4):303-11 - PubMed
  59. Science. 2006 Sep 29;313(5795):1929-35 - PubMed
  60. J Med Chem. 2013 Nov 14;56(21):8377-88 - PubMed

Publication Types