Display options
Share it on

ACS Omega. 2020 Jan 30;5(5):2345-2354. doi: 10.1021/acsomega.9b03735. eCollection 2020 Feb 11.

Preclinical Pharmacokinetics of Complement C5a Receptor Antagonists PMX53 and PMX205 in Mice.

ACS omega

Vinod Kumar, John D Lee, Richard J Clark, Peter G Noakes, Stephen M Taylor, Trent M Woodruff

Affiliations

  1. School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
  2. University of Queensland Centre for Clinical Research, the University of Queensland, Brisbane, QLD 4029, Australia.
  3. Queensland Brain Institute, the University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
  4. Wesley Medical Research, The Wesley Hospital, Auchenflower, Brisbane, QLD 4066, Australia.

PMID: 32064396 PMCID: PMC7017397 DOI: 10.1021/acsomega.9b03735

Abstract

The cyclic hexapeptides PMX53 and PMX205 are potent noncompetitive inhibitors of complement C5a receptor 1 (C5aR1). They are widely utilized to study the role of C5aR1 in mouse models, including central nervous system (CNS) disease, and are dosed through a variety of routes of administration. However, a comprehensive pharmacokinetics analysis of these drugs has not been reported. In this study, the blood and CNS pharmacokinetics of PMX53 and PMX205 were performed in mice following intravenous, intraperitoneal, subcutaneous, and oral administration at identical doses. The absorption and distribution of both drugs were rapid and followed a two-compartment model with elimination half-lives of ∼20 min for both compounds. Urinary excretion was the major route of elimination following intravenous dosing with ∼50% of the drug excreted unchanged within the first 12 h. Oral bioavailability of PMX205 was higher than that of PMX53 (23% versus 9%), and PMX205 was also more efficient than PMX53 at entering the intact CNS. In comparison to other routes, subcutaneous administration of PMX205 resulted in high bioavailability (above 90%), as well as prolonged plasma and CNS exposure. Finally, repeated daily oral or subcutaneous administration of PMX205 demonstrated no accumulation of drug in blood, the brain, or the spinal cord, promoting its safety for chronic dosing. These results will be helpful in correlating the desired therapeutic effects of these C5aR1 antagonists with their pharmacokinetic profile. It also suggests that subcutaneous dosing of PMX205 may be an appropriate route of administration for future clinical testing in neurological disease.

Copyright © 2020 American Chemical Society.

Conflict of interest statement

The authors declare the following competing financial interest(s): Prof Woodruff consults to Alsonex Pty Ltd, who are commercially developing PMX205 for ALS treatment. He holds no stocks, shares or ot

References

  1. FASEB J. 2011 Jul;25(7):2447-55 - PubMed
  2. Br J Pharmacol. 2001 Dec;134(8):1778-86 - PubMed
  3. Neurosurgery. 2008 Jul;63(1):122-5; discussion 125-6 - PubMed
  4. J Immunol. 2012 Dec 1;189(11):5442-8 - PubMed
  5. Br J Pharmacol. 2017 Apr;174(8):689-699 - PubMed
  6. J Immunol. 2004 Aug 15;173(4):2524-9 - PubMed
  7. Int Immunopharmacol. 2014 Aug;21(2):293-300 - PubMed
  8. Cardiovasc Res. 2013 Feb 1;97(2):311-20 - PubMed
  9. Semin Immunol. 2016 Jun;28(3):292-308 - PubMed
  10. Rheumatology (Oxford). 2007 Dec;46(12):1773-8 - PubMed
  11. Br J Pharmacol. 1999 Dec;128(7):1461-6 - PubMed
  12. mBio. 2018 Jan 23;9(1): - PubMed
  13. Front Immunol. 2018 Mar 15;9:488 - PubMed
  14. Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9439-44 - PubMed
  15. Sci Rep. 2016 Apr 20;6:24575 - PubMed
  16. JCI Insight. 2018 Dec 20;3(24): - PubMed
  17. Anesthesiology. 2006 Jun;104(6):1274-82 - PubMed
  18. FASEB J. 2006 Jul;20(9):1407-17 - PubMed
  19. J Pharmacol Exp Ther. 2005 Aug;314(2):811-7 - PubMed
  20. PLoS One. 2016 Jan 04;11(1):e0146022 - PubMed
  21. Nat Genet. 2005 Aug;37(8):835-43 - PubMed
  22. Neurobiol Dis. 2015 Apr;76:87-97 - PubMed
  23. J Clin Invest. 2003 Dec;112(11):1644-54 - PubMed
  24. Sci Rep. 2017 Feb 16;7:42714 - PubMed
  25. J Immunol. 2009 Jul 15;183(2):1375-83 - PubMed
  26. Oncoimmunology. 2017 Jul 13;6(10):e1349587 - PubMed
  27. Am J Hypertens. 2014 Jun;27(6):857-64 - PubMed
  28. Mol Immunol. 2017 Sep;89:36-43 - PubMed
  29. J Immunol. 2008 Dec 15;181(12):8727-34 - PubMed
  30. Mol Vis. 2011 Apr 19;17:949-64 - PubMed
  31. Curr Opin Mol Ther. 2006 Dec;8(6):529-38 - PubMed
  32. J Neurochem. 2010 Apr;113(2):389-401 - PubMed
  33. Br J Pharmacol. 2013 Jan;168(2):488-501 - PubMed
  34. J Neurosci. 2015 Apr 22;35(16):6517-31 - PubMed
  35. J Neurotrauma. 2017 Jun 15;34(12):2075-2085 - PubMed
  36. Mol Immunol. 2018 Oct;102:14-25 - PubMed
  37. J Neuroinflammation. 2011 Jul 07;8:80 - PubMed
  38. J Immunol. 2000 Jun 15;164(12):6560-5 - PubMed
  39. Acta Pharm Sin B. 2014 Feb;4(1):74-8 - PubMed
  40. Eur J Pharm Sci. 2008 Apr 23;33(4-5):390-8 - PubMed
  41. Clin Immunol. 2003 Sep;108(3):263-73 - PubMed
  42. J Immunol. 2013 Apr 1;190(7):3493-9 - PubMed
  43. FASEB J. 2013 Mar;27(3):855-64 - PubMed
  44. Sci Rep. 2018 May 25;8(1):8101 - PubMed
  45. Mol Pharmacol. 2004 Apr;65(4):868-79 - PubMed
  46. FASEB J. 2002 Oct;16(12):1567-74 - PubMed
  47. Kidney Int. 2018 Mar;93(3):615-625 - PubMed
  48. J Med Chem. 1999 Jun 3;42(11):1965-74 - PubMed

Publication Types