Display options
Share it on

Front Pharmacol. 2020 Feb 21;11:77. doi: 10.3389/fphar.2020.00077. eCollection 2020.

Sphingosine-1-Phosphate Receptors Modulators Decrease Signs of Neuroinflammation and Prevent Parkinson's Disease Symptoms in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model.

Frontiers in pharmacology

Élise Pépin, Tim Jalinier, Guillaume L Lemieux, Guy Massicotte, Michel Cyr

Affiliations

  1. Groupe de recherche en signalisation cellulaire, Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.

PMID: 32153401 PMCID: PMC7047735 DOI: 10.3389/fphar.2020.00077

Abstract

Sphingosine-1-phosphate (S1P) is a potent bioactive lipid mediator that acts as a natural ligand upon binding to five different receptors that are located in astrocytes, oligodendrocytes, microglial and neuronal cells. Recently, global activation of these receptors by FTY720 (fingolimod) has been suggested to provide neuroprotection in animal model of Parkinson's disease (PD). Among S1P receptors, the subtype 1 (S1P1R) has been linked to features of neuroprotection and, using the selective agonist SEW2871, the present investigation assessed potential benefits (and mechanisms) of this receptor subtype in an established animal model of PD. We demonstrated that oral treatments with SEW2871 are able to provide protection to the same levels as FTY720 against loss of dopaminergic neurons and motor deficits in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg/kg, i.p., 5 days) mouse model of PD. At the molecular level, we observed that the beneficial effects of both S1PR agonists were not associated with alterations in ERK and Akt levels, two markers of molecular adaptations in the striatum neurons. However, these compounds have the capacity to prevent signs of neuroinflammation such as the activation of astrocytes and glial cells, as well as MPTP-induced reduction of BDNF levels in key regions of the brain implicated in motor functions. These findings suggest that selective S1P1R modulation has the ability to provide neuroprotection in response to MPTP neurotoxicity. Targeting S1P1R in PD therapy may represent a prominent candidate for treatment of this neurodegenerative conditions.

Copyright © 2020 Pépin, Jalinier, Lemieux, Massicotte and Cyr.

Keywords: FTY720; MPTP; S1P receptors; SEW2871; neuroinflammation; neuroprotection

References

  1. J Neural Transm Suppl. 2007;(72):113-20 - PubMed
  2. Neurology. 2011 Feb 22;76(8 Suppl 3):S9-14 - PubMed
  3. Pharmacol Res. 2013 Jan;67(1):1-9 - PubMed
  4. Brain Res. 2015 Oct 22;1624:349-358 - PubMed
  5. Neurosurgery. 1995 Oct;37(4):733-9; discussion 739-41 - PubMed
  6. FASEB J. 2017 Jan;31(1):172-179 - PubMed
  7. Transl Neurodegener. 2015 Oct 12;4:19 - PubMed
  8. Front Mol Neurosci. 2017 Apr 10;10:102 - PubMed
  9. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14230-5 - PubMed
  10. PLoS One. 2013 Apr 12;8(4):e61988 - PubMed
  11. Ann Neurol. 2011 May;69(5):759-77 - PubMed
  12. Arterioscler Thromb Vasc Biol. 2005 May;25(5):976-81 - PubMed
  13. Expert Opin Ther Pat. 2016;26(4):455-70 - PubMed
  14. Mov Disord. 2018 May;33(5):717-729 - PubMed
  15. Eur J Pharmacol. 2016 Nov 15;791:348-354 - PubMed
  16. Front Cell Neurosci. 2014 Dec 22;8:430 - PubMed
  17. Chem Biol. 2005 Jun;12(6):703-15 - PubMed
  18. Curr Top Microbiol Immunol. 2014;378:149-70 - PubMed
  19. Eur J Immunol. 2005 Dec;35(12):3570-80 - PubMed
  20. Neuropharmacology. 2014 Oct;85:314-27 - PubMed
  21. Hum Mol Genet. 2014 May 1;23(9):2251-65 - PubMed
  22. J Neuroinflammation. 2013 Mar 19;10:41 - PubMed
  23. J Neuroimmune Pharmacol. 2006 Sep;1(3):212-22 - PubMed
  24. Nat Rev Neurol. 2010 Jul;6(7):373-82 - PubMed
  25. Blood. 1999 May 1;93(9):2984-90 - PubMed
  26. J Neurosci. 2017 Jan 25;37(4):871-881 - PubMed
  27. J Neurochem. 2018 Mar;144(6):736-747 - PubMed
  28. Aging Dis. 2018 Jun 1;9(3):523-536 - PubMed
  29. Neuroscience. 2015 Dec 17;311:34-44 - PubMed
  30. J Lipid Res. 2014 Aug;55(8):1596-608 - PubMed
  31. Neuron. 2002 May 16;34(4):521-33 - PubMed
  32. Cell Physiol Biochem. 2014;34(1):148-57 - PubMed
  33. Behav Brain Res. 2014 Jul 15;268:88-93 - PubMed
  34. Front Cell Neurosci. 2014 Sep 12;8:283 - PubMed
  35. PLoS One. 2016 Mar 09;11(3):e0150220 - PubMed
  36. J Biol Chem. 2002 Jun 14;277(24):21453-7 - PubMed
  37. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2012-2017 - PubMed
  38. Parkinsonism Relat Disord. 2012 Jan;18 Suppl 1:S183-5 - PubMed
  39. Hum Mol Genet. 2015 Sep 1;24(17):4958-70 - PubMed
  40. Neuropharmacology. 2018 Jun;135:139-150 - PubMed
  41. Sci Rep. 2016 Apr 27;6:24939 - PubMed
  42. Mol Cell Neurosci. 1994 Jun;5(3):201-9 - PubMed
  43. Pharmacol Ther. 2008 Jan;117(1):77-93 - PubMed
  44. Mov Disord. 2013 Jan;28(1):61-70 - PubMed
  45. J Neurol Sci. 2017 Oct 15;381:308-314 - PubMed
  46. Stroke. 2016 Jul;47(7):1899-906 - PubMed
  47. Brain Res. 2017 Mar 1;1658:51-59 - PubMed
  48. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):751-6 - PubMed
  49. Behav Brain Res. 2012 Mar 1;228(1):9-15 - PubMed
  50. Br J Pharmacol. 2013 Jul;169(5):1114-29 - PubMed
  51. J Neurosci. 1995 Dec;15(12):7810-20 - PubMed
  52. Clin Exp Immunol. 2014 Jul;177(1):94-101 - PubMed
  53. Prostaglandins Other Lipid Mediat. 2004 Jan;73(1-2):141-50 - PubMed
  54. J Biol Chem. 2004 Apr 2;279(14):13839-48 - PubMed
  55. J Neuroinflammation. 2015 May 08;12:86 - PubMed
  56. Stroke. 2010 Feb;41(2):368-74 - PubMed
  57. FASEB J. 2018 Jun;32(6):3336-3345 - PubMed
  58. Neuron. 2009 Apr 30;62(2):218-29 - PubMed

Publication Types