Display options
Share it on

Front Cell Dev Biol. 2020 Feb 21;8:107. doi: 10.3389/fcell.2020.00107. eCollection 2020.

Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging.

Frontiers in cell and developmental biology

Jérémy Boulestreau, Marie Maumus, Pauline Rozier, Christian Jorgensen, Danièle Noël

Affiliations

  1. Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.
  2. Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France.

PMID: 32154253 PMCID: PMC7047768 DOI: 10.3389/fcell.2020.00107

Abstract

Aging is associated with high prevalence of chronic degenerative diseases that take a large part of the increasing burden of morbidities in a growing demographic of elderly people. Aging is a complex process that involves cell autonomous and cell non-autonomous mechanisms where senescence plays an important role. Senescence is characterized by the loss of proliferative potential, resistance to cell death by apoptosis and expression of a senescence-associated secretory phenotype (SASP). SASP includes pro-inflammatory cytokines and chemokines, tissue-damaging proteases, growth factors; all contributing to tissue microenvironment alteration and loss of tissue homeostasis. Emerging evidence suggests that the changes in the number and composition of extracellular vesicles (EVs) released by senescent cells contribute to the adverse effects of senescence in aging. In addition, age-related alterations in mesenchymal stem/stromal cells (MSCs) have been associated to dysregulated functions. The loss of functional stem cells necessary to maintain tissue homeostasis likely directly contributes to aging. In this review, we will focus on the characteristics and role of EVs isolated from senescent MSCs, the potential effect of MSC-derived EVs in aging and discuss their therapeutic potential to improve age-related diseases.

Copyright © 2020 Boulestreau, Maumus, Rozier, Jorgensen and Noël.

Keywords: aging; clinical translation; extracellular vesicles; mesenchymal stem cells; regenerative medicine; senescence

References

  1. J Extracell Vesicles. 2019 Aug 15;8(1):1656044 - PubMed
  2. Nature. 2017 Aug 3;548(7665):52-57 - PubMed
  3. Cell Transplant. 2017 Sep;26(9):1520-1529 - PubMed
  4. J Clin Med. 2019 Nov 04;8(11): - PubMed
  5. Science. 2014 May 9;344(6184):630-4 - PubMed
  6. Cell Metab. 2015 Jul 7;22(1):54-6 - PubMed
  7. Cell Metab. 2019 Aug 6;30(2):329-342.e5 - PubMed
  8. Mech Ageing Dev. 2017 Dec;168:44-53 - PubMed
  9. Biomol Ther (Seoul). 2018 Jul 1;26(4):389-398 - PubMed
  10. Sci Rep. 2017 Mar 06;7:43923 - PubMed
  11. Front Genet. 2017 Dec 19;8:220 - PubMed
  12. Am J Otol. 1987 Mar;8(2):136-47 - PubMed
  13. Cell. 2013 Jun 6;153(6):1194-217 - PubMed
  14. Oxid Med Cell Longev. 2017;2017:7197598 - PubMed
  15. J Cell Mol Med. 2016 Dec;20(12):2384-2404 - PubMed
  16. Lancet. 2015 Feb 7;385(9967):484-6 - PubMed
  17. Biomed Mater Eng. 2017;28(s1):S57-S63 - PubMed
  18. Adv Exp Med Biol. 2017;998:179-185 - PubMed
  19. Stem Cell Res Ther. 2015 Sep 28;6:185 - PubMed
  20. Stem Cells. 2017 Apr;35(4):851-858 - PubMed
  21. Cells. 2019 Jan 10;8(1): - PubMed
  22. Aging Cell. 2016 Aug;15(4):744-54 - PubMed
  23. Stem Cell Res Ther. 2019 Jan 3;10(1):1 - PubMed
  24. Stem Cells. 2019 Jun;37(6):779-790 - PubMed
  25. Nat Commun. 2017 May 16;8:15287 - PubMed
  26. Cells. 2019 May 16;8(5): - PubMed
  27. J Cell Physiol. 2019 Nov;234(11):20310-20321 - PubMed
  28. ACS Nano. 2019 Feb 26;13(2):2450-2462 - PubMed
  29. Stem Cells Dev. 2016 Nov 15;25(22):1755-1766 - PubMed
  30. Int J Mol Sci. 2016 Aug 26;17(9): - PubMed
  31. Stem Cell Investig. 2017 Dec 19;4:98 - PubMed
  32. Mech Ageing Dev. 2006 Jul;127(7):639-42 - PubMed
  33. Front Med (Lausanne). 2018 Apr 17;5:104 - PubMed
  34. Cell Transplant. 2018 Mar;27(3):349-363 - PubMed
  35. Nat Rev Mol Cell Biol. 2018 Apr;19(4):213-228 - PubMed
  36. Stem Cells Transl Med. 2015 Oct;4(10):1131-43 - PubMed
  37. Cytotherapy. 2006;8(4):315-7 - PubMed
  38. Antioxid Redox Signal. 2018 Sep 20;29(9):864-879 - PubMed
  39. Stem Cell Res Ther. 2017 Jun 24;8(1):153 - PubMed
  40. J Mol Med (Berl). 2014 Apr;92(4):387-97 - PubMed
  41. Int J Mol Med. 2017 Apr;39(4):775-782 - PubMed
  42. Tissue Eng Part A. 2017 Nov;23(21-22):1231-1240 - PubMed
  43. Nature. 2005 Aug 4;436(7051):660-5 - PubMed
  44. Semin Cancer Biol. 2011 Dec;21(6):367-76 - PubMed
  45. Sci Rep. 2015 Nov 16;5:16662 - PubMed
  46. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 - PubMed
  47. Aging (Albany NY). 2016 Aug;8(8):1703-17 - PubMed
  48. Aging (Albany NY). 2019 Mar 25;11(6):1791-1803 - PubMed
  49. Stem Cell Res Ther. 2018 Jun 19;9(1):167 - PubMed
  50. Nat Commun. 2017 Jun 06;8:15729 - PubMed
  51. Cancer Res. 2008 Oct 1;68(19):7864-71 - PubMed
  52. Sci Rep. 2017 Nov 24;7(1):16214 - PubMed
  53. J Pathol. 2011 Apr;223(5):604-17 - PubMed
  54. Int J Mol Sci. 2017 Oct 02;18(10): - PubMed
  55. Aging (Albany NY). 2019 Sep 29;11(18):7996-8014 - PubMed
  56. Theranostics. 2017 Jul 6;7(10):2673-2689 - PubMed
  57. Acta Physiol (Oxf). 2020 Jan;228(1):e13346 - PubMed
  58. Nature. 2011 Aug 31;477(7362):90-4 - PubMed
  59. Stem Cells. 2018 Mar;36(3):420-433 - PubMed
  60. Diabetologia. 2020 Feb;63(2):431-443 - PubMed
  61. World J Stem Cells. 2019 Jun 26;11(6):337-346 - PubMed
  62. Oncotarget. 2015 Nov 24;6(37):39457-68 - PubMed
  63. Cell. 2013 Nov 21;155(5):1104-18 - PubMed
  64. Cell Metab. 2015 Jul 7;22(1):164-74 - PubMed
  65. Stem Cells. 2016 Jan;34(1):148-59 - PubMed
  66. Science. 2016 Nov 25;354(6315): - PubMed

Publication Types