Display options
Share it on

Cell Discov. 2020 Mar 16;6:14. doi: 10.1038/s41421-020-0153-3. eCollection 2020.

Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2.

Cell discovery

Yadi Zhou, Yuan Hou, Jiayu Shen, Yin Huang, William Martin, Feixiong Cheng

Affiliations

  1. 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA.
  2. 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA.
  3. 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA.

PMID: 32194980 PMCID: PMC7073332 DOI: 10.1038/s41421-020-0153-3

Abstract

Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV-host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the "

© The Author(s) 2020.

Keywords: Bioinformatics; Comparative genomics; Proteomic analysis

Conflict of interest statement

Conflict of interestThe authors declare that they have no conflict of interest.

References

  1. Lancet. 2020 Feb 22;395(10224):565-574 - PubMed
  2. Nat Commun. 2019 Mar 13;10(1):1197 - PubMed
  3. Nat Commun. 2019 May 28;10(1):2342 - PubMed
  4. J Virol. 2013 Sep;87(17):9486-500 - PubMed
  5. Trends Microbiol. 2017 Jan;25(1):35-48 - PubMed
  6. Antimicrob Agents Chemother. 2014 Aug;58(8):4885-93 - PubMed
  7. Discov Med. 2010 Dec;10(55):479-88 - PubMed
  8. Nature. 2020 Mar;579(7798):270-273 - PubMed
  9. Science. 2020 Mar 13;367(6483):1260-1263 - PubMed
  10. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 - PubMed
  11. Breast Cancer Res Treat. 2011 Aug;128(3):625-31 - PubMed
  12. Antivir Chem Chemother. 2009;19(4):151-6 - PubMed
  13. Nat Commun. 2018 Jul 12;9(1):2691 - PubMed
  14. N Engl J Med. 2020 Mar 26;382(13):1199-1207 - PubMed
  15. Am J Hum Genet. 2019 May 2;104(5):861-878 - PubMed
  16. J Pineal Res. 2007 Jan;42(1):28-42 - PubMed
  17. Curr Top Microbiol Immunol. 2018;419:1-42 - PubMed
  18. Inflammopharmacology. 2006 Mar;14(1-2):2-9 - PubMed
  19. Clin Sci (Lond). 2006 Mar;110(3):379-86 - PubMed
  20. J Virol. 2002 May;76(10):5233-50 - PubMed
  21. Cell Res. 2020 Mar;30(3):269-271 - PubMed
  22. J Pineal Res. 2014 Nov;57(4):381-4 - PubMed
  23. FEBS Lett. 2008 Jan 23;582(2):385-90 - PubMed
  24. J Virol. 2013 Jan;87(2):912-22 - PubMed
  25. Nat Rev Drug Discov. 2016 May;15(5):327-47 - PubMed
  26. Nucleic Acids Res. 2014 Jan;42(Database issue):D1091-7 - PubMed
  27. Clin Pharmacol Ther. 2018 Feb;103(2):287-295 - PubMed
  28. Drugs. 2017 Dec;77(18):1935-1966 - PubMed
  29. Elife. 2019 Jan 11;8: - PubMed
  30. Sci Transl Med. 2015 Apr 8;7(282):282ra49 - PubMed
  31. Nucleic Acids Res. 2016 Jan 4;44(D1):D7-19 - PubMed
  32. J Pineal Res. 2013 Apr;54(3):245-57 - PubMed
  33. Naunyn Schmiedebergs Arch Pharmacol. 2016 Jul;389(7):695-712 - PubMed
  34. Antivir Ther. 2015;20(8):835-42 - PubMed
  35. mSystems. 2019 Apr 9;4(2): - PubMed
  36. PLoS One. 2013 May 23;8(5):e65045 - PubMed
  37. Nat Rev Drug Discov. 2017 Jan;16(1):19-34 - PubMed
  38. Curr Top Med Chem. 2004;4(13):1433-54 - PubMed
  39. Nat Commun. 2019 Aug 2;10(1):3476 - PubMed
  40. Brief Funct Genomics. 2018 Nov 26;17(6):381-391 - PubMed
  41. Nucleic Acids Res. 2014 Jan;42(Database issue):D1098-106 - PubMed
  42. Ital J Pediatr. 2013 Oct 03;39:61 - PubMed
  43. Respir Med Case Rep. 2017 Apr 12;21:116-117 - PubMed
  44. mBio. 2013 Apr 30;4(3):e00165-13 - PubMed
  45. Cell Death Dis. 2017 Dec 13;8(12):3215 - PubMed
  46. JAMA. 2020 Feb 25;323(8):707-708 - PubMed
  47. Asia Pac Allergy. 2013 Apr;3(2):136-9 - PubMed
  48. Trends Mol Med. 2016 Nov;22(11):919-921 - PubMed
  49. Recent Pat Endocr Metab Immune Drug Discov. 2012 Jan;6(1):30-9 - PubMed
  50. Chem Sci. 2020 Jan 13;11(7):1775-1797 - PubMed
  51. Eur J Heart Fail. 2009 Apr;11(4):349-53 - PubMed
  52. Cell Host Microbe. 2016 Aug 10;20(2):259-70 - PubMed
  53. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9 - PubMed
  54. J Gen Virol. 1992 Dec;73 ( Pt 12):3285-8 - PubMed
  55. Nat Commun. 2019 Jan 10;10(1):120 - PubMed
  56. Antiviral Res. 2017 Jan;137:76-81 - PubMed
  57. Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 - PubMed
  58. PLoS Comput Biol. 2012;8(5):e1002503 - PubMed
  59. Nat Med. 2016 Oct;22(10):1101-1107 - PubMed
  60. Nat Rev Microbiol. 2016 Aug;14(8):523-34 - PubMed
  61. Clin Infect Dis. 2017 Nov 29;65(12):2042-2049 - PubMed
  62. Antiviral Res. 2015 Aug;120:140-6 - PubMed
  63. Science. 2005 Sep 16;309(5742):1864-8 - PubMed
  64. Bioinformatics. 2019 Dec 15;35(24):5191-5198 - PubMed
  65. Cell. 2019 Sep 5;178(6):1526-1541.e16 - PubMed
  66. Nat Biotechnol. 2012 Nov;30(11):1125-30 - PubMed
  67. Antiviral Res. 2015 Mar;115:9-16 - PubMed
  68. Antimicrob Agents Chemother. 2014 Aug;58(8):4875-84 - PubMed
  69. Antiviral Res. 2007 May;74(2):92-101 - PubMed
  70. Gut. 2016 Dec;65(12):2017-2028 - PubMed
  71. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 - PubMed
  72. J Pineal Res. 2002 Mar;32(2):112-9 - PubMed
  73. Sci Transl Med. 2013 Jun 19;5(190):190ra79 - PubMed
  74. N Engl J Med. 2017 Dec 21;377(25):2493-2499 - PubMed
  75. Sci Transl Med. 2011 Aug 17;3(96):96ra77 - PubMed
  76. Nucleic Acids Res. 2007 Jan;35(Database issue):D198-201 - PubMed
  77. Crit Care Med. 2014 Feb;42(2):313-21 - PubMed
  78. Viruses. 2018 Jan 30;10(2): - PubMed
  79. Methods Mol Biol. 2019;1878:243-261 - PubMed
  80. Bioinformatics. 2020 May 1;36(9):2805-2812 - PubMed
  81. Antiviral Res. 2011 Apr;90(1):64-9 - PubMed
  82. Nucleic Acids Res. 2016 Jan 4;44(D1):D1069-74 - PubMed
  83. Lancet. 2020 Feb 15;395(10223):507-513 - PubMed
  84. PLoS Comput Biol. 2016 Sep 15;12(9):e1005074 - PubMed
  85. Nature. 2016 Jul 7;535(7610):169-172 - PubMed
  86. Nat Rev Cancer. 2008 Jan;8(1):24-36 - PubMed
  87. Brief Bioinform. 2017 Jul 1;18(4):682-697 - PubMed
  88. N Engl J Med. 2015 May 14;372(20):1877-9 - PubMed
  89. Antimicrob Agents Chemother. 2015 Feb;59(2):1088-99 - PubMed
  90. PLoS Pathog. 2014 May 22;10(5):e1004163 - PubMed
  91. Viral Immunol. 2008 Jun;21(2):153-62 - PubMed
  92. Antiviral Res. 2018 Feb;150:123-129 - PubMed
  93. PLoS One. 2018 Mar 22;13(3):e0194868 - PubMed
  94. Science. 2006 Sep 29;313(5795):1929-35 - PubMed
  95. BMC Immunol. 2005 Jan 18;6:2 - PubMed

Publication Types

Grant support