Display options
Share it on

Aquat Sci. 2020;82(2):28. doi: 10.1007/s00027-020-0700-x. Epub 2020 Feb 18.

Bacterial community composition and function along spatiotemporal connectivity gradients in the Danube floodplain (Vienna, Austria).

Aquatic sciences

Magdalena J Mayr, Katharina Besemer, Anna Sieczko, Katalin Demeter, Peter Peduzzi

Affiliations

  1. 1Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
  2. WasserCluster Lunz, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz Am See, Austria.
  3. 3Department of Thematic Studies-Environmental Change, Linköping University, Tema M, Campus Valla, 581 83 Linköping, Sweden.

PMID: 32165802 PMCID: PMC7045780 DOI: 10.1007/s00027-020-0700-x

Abstract

It is well recognized that river-floodplain systems contribute significantly to riverine ecosystem metabolism, and that bacteria are key players in the aquatic organic carbon cycle, but surprisingly few studies have linked bacterial community composition (BCC), function and carbon quality in these hydrologically highly dynamic habitats. We investigated aquatic BCC and extracellular enzymatic activity (EEA) related to dissolved organic carbon quality and algae composition, including the impact of a major flood event in one of the last remaining European semi-natural floodplain-systems. We found that surface connectivity of floodplain pools homogenizes BCC and EEA, whereas low connectivity led to increased BCC and EEA heterogeneity, supported by their relationship to electrical conductivity, an excellent indicator for surface connection strength. Hydrogeochemical parameters best explained variation of both BCC and EEA, while the algal community and chromophoric DOM properties explained only minor fractions of BCC variation. We conclude that intermittent surface connectivity and especially permanent isolation of floodplain pools from the main river channel may severely alter BCC and EEA, with potential consequences for nutrient cycling, ecological services and greenhouse gas emissions. Disentangling microbial structure-function coupling is therefore crucial, if we are to understand and predict the consequences of human alterations on these dynamic systems.

© The Author(s) 2020.

Keywords: Dissolved organic matter; Ecosystem processes; Flooding; Freshwater bacterial diversity; Hydrology

References

  1. Ecology. 2006 Oct;87(10):2614-25 - PubMed
  2. Environ Microbiol. 2008 Apr;10(4):1057-67 - PubMed
  3. ISME J. 2016 Mar;10(3):533-45 - PubMed
  4. Appl Environ Microbiol. 2005 Feb;71(2):609-20 - PubMed
  5. Appl Environ Microbiol. 2007 Jan;73(2):421-31 - PubMed
  6. Front Microbiol. 2015 Nov 03;6:1221 - PubMed
  7. Ecology. 2008 Sep;89(9):2623-32 - PubMed
  8. PLoS One. 2012;7(5):e36959 - PubMed
  9. ISME J. 2013 Dec;7(12):2361-73 - PubMed
  10. ISME J. 2019 Nov;13(11):2727-2736 - PubMed
  11. Appl Environ Microbiol. 2006 Jan;72(1):212-20 - PubMed
  12. Appl Environ Microbiol. 2007 Aug;73(16):5276-83 - PubMed
  13. Org Geochem. 2009 Mar;40(3):321-331 - PubMed
  14. FEMS Microbiol Ecol. 2015 Oct;91(10): - PubMed
  15. Aquat Sci. 2014;76:115-129 - PubMed
  16. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9 - PubMed
  17. Ecology. 2014 May;95(5):1134-40 - PubMed
  18. Front Microbiol. 2016 Feb 24;7:214 - PubMed
  19. Environ Sci Technol. 2002 Feb 15;36(4):742-6 - PubMed
  20. Environ Microbiol Rep. 2012 Feb;4(1):1-9 - PubMed
  21. FEMS Microbiol Ecol. 2006 Jun;56(3):406-17 - PubMed
  22. PLoS One. 2014 Jan 20;9(1):e85950 - PubMed
  23. ISME J. 2017 Jul;11(7):1640-1650 - PubMed
  24. ISME J. 2012 Mar;6(3):680-91 - PubMed
  25. Front Microbiol. 2013 May 09;4:112 - PubMed
  26. Appl Environ Microbiol. 2014 Oct;80(19):6004-12 - PubMed
  27. Microb Ecol. 2005 Aug;50(2):253-67 - PubMed
  28. ISME J. 2011 Feb;5(2):351-61 - PubMed
  29. ISME J. 2014 Aug;8(8):1715-26 - PubMed
  30. Environ Microbiol. 2013 Sep;15(9):2489-504 - PubMed
  31. ISME J. 2008 Jul;2(7):689-95 - PubMed
  32. Ecology. 2010 May;91(5):1466-76 - PubMed
  33. ISME J. 2012 Aug;6(8):1459-68 - PubMed
  34. Environ Sci Technol. 2003 Oct 15;37(20):4702-8 - PubMed
  35. Appl Environ Microbiol. 2001 Feb;67(2):539-45 - PubMed
  36. Front Microbiol. 2015 Feb 17;6:80 - PubMed
  37. Appl Environ Microbiol. 2005 Dec;71(12):8201-6 - PubMed
  38. J Biol Chem. 1948 Jan;172(1):83-99 - PubMed
  39. FEMS Microbiol Ecol. 2013 Mar;83(3):650-63 - PubMed
  40. PLoS One. 2010 Apr 01;5(4):e9988 - PubMed
  41. Appl Environ Microbiol. 1999 Aug;65(8):3518-25 - PubMed
  42. Ecology. 2007 Sep;88(9):2162-73 - PubMed
  43. PeerJ. 2018 Jul 20;6:e5289 - PubMed

Publication Types