Display options
Share it on

iScience. 2020 Mar 27;23(3):100955. doi: 10.1016/j.isci.2020.100955. Epub 2020 Feb 28.

Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State.

iScience

Yufeng Ren, Jeremy Forté, Khaled Cheaib, Nicolas Vanthuyne, Louis Fensterbank, Hervé Vezin, Maylis Orio, Sébastien Blanchard, Marine Desage-El Murr

Affiliations

  1. Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France.
  2. Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR CNRS 7313, 13397 Marseille, France.
  3. Université des Sciences et Technologies de Lille, LASIR, UMR CNRS 8516, 59655 Villeneuve d'Ascq Cedex, France.
  4. Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France. Electronic address: [email protected].

PMID: 32199288 PMCID: PMC7083792 DOI: 10.1016/j.isci.2020.100955

Abstract

Metalloenzymes use earth-abundant non-noble metals to perform high-fidelity transformations in the biological world. To ensure chemical efficiency, metalloenzymes have acquired evolutionary reactivity-enhancing tools. Among these, the entatic state model states that a strongly distorted geometry induced by ligands around a metal center gives rise to an energized structure called entatic state, strongly improving the reactivity. However, the original definition refers both to the transfer of electrons or chemical groups, whereas the chemical application of this concept in synthetic systems has mostly focused on electron transfer, therefore eluding chemical transformations. Here we report that a highly strained redox-active ligand enables a copper complex to perform catalytic nitrogen- and carbon-group transfer in as fast as 2 min, thus exhibiting a strong increase in reactivity compared with its unstrained analogue. This report combines two reactivity-enhancing features from metalloenzymes, entasis and redox cofactors, applied to group-transfer catalysis.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Keywords: Catalysis; Inorganic Chemistry; Molecular Inorganic Chemistry

Conflict of interest statement

Declaration of Interests The authors declare no competing interests.

References

  1. Angew Chem Int Ed Engl. 2013 Nov 25;52(48):12510-29 - PubMed
  2. J Am Chem Soc. 2015 Apr 29;137(16):5468-79 - PubMed
  3. Chem Soc Rev. 2015 Oct 7;44(19):6886-915 - PubMed
  4. Chem Rev. 1998 Apr 2;98(2):705-762 - PubMed
  5. ACS Cent Sci. 2015 May 27;1(2):89-93 - PubMed
  6. J Am Chem Soc. 2010 Aug 11;132(31):10891-902 - PubMed
  7. Chemistry. 2019 Feb 21;25(11):2651-2662 - PubMed
  8. Inorg Chem. 2008 Dec 15;47(24):11620-32 - PubMed
  9. Science. 1998 Jan 23;279(5350):537-40 - PubMed
  10. Science. 2010 Feb 12;327(5967):794-5 - PubMed
  11. Angew Chem Int Ed Engl. 2016 Sep 5;55(37):11129-33 - PubMed
  12. J Am Chem Soc. 2015 Jan 28;137(3):1141-6 - PubMed
  13. Chemistry. 2017 Oct 26;23(60):15030-15034 - PubMed
  14. Chem Soc Rev. 2013 Feb 21;42(4):1440-59 - PubMed
  15. Chem Sci. 2016 Mar 1;7(3):2030-2036 - PubMed
  16. Angew Chem Int Ed Engl. 2014 Jan 3;53(1):299-304 - PubMed
  17. Chemistry. 2017 Oct 9;23(56):13819-13829 - PubMed
  18. ACS Cent Sci. 2018 Mar 28;4(3):372-377 - PubMed
  19. Inorg Chem. 2018 Aug 20;57(16):9738-9747 - PubMed
  20. Science. 2017 Jun 23;356(6344):1276-1280 - PubMed
  21. Angew Chem Int Ed Engl. 2016 Nov 2;55(45):14005-14008 - PubMed
  22. Chemistry. 2017 Nov 7;23(62):15738-15745 - PubMed
  23. Inorg Chem. 2011 Oct 17;50(20):9896-903 - PubMed
  24. Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4143-4148 - PubMed
  25. Biochemistry. 2018 Jun 5;57(22):3115-3125 - PubMed
  26. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4037-4043 - PubMed
  27. Inorg Chem. 2019 Mar 18;58(6):3754-3763 - PubMed
  28. Angew Chem Int Ed Engl. 1998 Sep 4;37(16):2217-2220 - PubMed
  29. Chemistry. 2018 Apr 6;24(20):5086-5090 - PubMed
  30. Inorg Chem. 2011 Oct 17;50(20):9752-65 - PubMed
  31. J Am Chem Soc. 2001 Mar 14;123(10):2213-23 - PubMed
  32. Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10712-6 - PubMed
  33. Eur J Biochem. 1995 Dec 1;234(2):363-81 - PubMed
  34. Science. 2013 Jan 18;339(6117):307-10 - PubMed
  35. Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10228-34 - PubMed
  36. Nat Chem. 2018 Mar;10(3):355-362 - PubMed
  37. Angew Chem Int Ed Engl. 2008;47(10):1814-8 - PubMed
  38. Chemistry. 2017 Oct 4;23(55):13607-13611 - PubMed
  39. Proc Natl Acad Sci U S A. 1968 Feb;59(2):498-505 - PubMed
  40. Nature. 2016 Aug 17;536(7616):317-21 - PubMed

Publication Types