Display options
Share it on

Sci Adv. 2020 Mar 13;6(11):eaax8922. doi: 10.1126/sciadv.aax8922. eCollection 2020 Mar.

On the fate of oxygenated organic molecules in atmospheric aerosol particles.

Science advances

V Pospisilova, F D Lopez-Hilfiker, D M Bell, I El Haddad, C Mohr, W Huang, L Heikkinen, M Xiao, J Dommen, A S H Prevot, U Baltensperger, J G Slowik

Affiliations

  1. Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland.
  2. Tofwerk AG, 3600 Thun, Switzerland.
  3. Department of Environmental Science, Stockholm University, Stockholm 11418, Sweden.
  4. Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.
  5. Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland.

PMID: 32201715 PMCID: PMC7069715 DOI: 10.1126/sciadv.aax8922

Abstract

Highly oxygenated organic molecules (HOMs) are formed from the oxidation of biogenic and anthropogenic gases and affect Earth's climate and air quality by their key role in particle formation and growth. While the formation of these molecules in the gas phase has been extensively studied, the complexity of organic aerosol (OA) and lack of suitable measurement techniques have hindered the investigation of their fate post-condensation, although further reactions have been proposed. We report here novel real-time measurements of these species in the particle phase, achieved using our recently developed extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Our results reveal that condensed-phase reactions rapidly alter OA composition and the contribution of HOMs to the particle mass. In consequence, the atmospheric fate of HOMs cannot be described solely in terms of volatility, but particle-phase reactions must be considered to describe HOM effects on the overall particle life cycle and global carbon budget.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. J Phys Chem A. 2016 Apr 28;120(16):2569-82 - PubMed
  2. Environ Sci Technol. 2015 Nov 17;49(22):13605-12 - PubMed
  3. J Phys Chem A. 2018 Jun 14;122(23):5190-5201 - PubMed
  4. Sci Rep. 2016 Oct 13;6:35038 - PubMed
  5. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):2038-2043 - PubMed
  6. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8014-9 - PubMed
  7. Environ Sci Technol. 2013 Jul 2;47(13):7324-31 - PubMed
  8. Atmos Chem Phys. 2017;17(3):2103-2162 - PubMed
  9. Environ Sci Technol. 2015 May 5;49(9):5571-8 - PubMed
  10. Nature. 2013 Nov 7;503(7474):67-71 - PubMed
  11. Environ Sci Technol. 2005 Apr 15;39(8):2668-78 - PubMed
  12. Science. 2013 Feb 22;339(6122):943-6 - PubMed
  13. Nat Chem. 2018 Apr;10(4):462-468 - PubMed
  14. Chem Rev. 2019 Mar 27;119(6):3472-3509 - PubMed
  15. Org Biomol Chem. 2007 Nov 21;5(22):3682-9 - PubMed
  16. Environ Sci Technol. 2015 Nov 17;49(22):13264-74 - PubMed
  17. Environ Sci Technol. 2005 Jun 1;39(11):4049-59 - PubMed
  18. Nature. 2016 May 25;533(7604):527-31 - PubMed
  19. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14168-73 - PubMed
  20. Environ Sci Technol. 2015 Jul 07;49(13):7754-61 - PubMed
  21. Chem Sci. 2015 Aug 1;6(8):4876-4883 - PubMed
  22. Sci Adv. 2018 Dec 12;4(12):eaau5363 - PubMed
  23. Environ Sci Technol. 2018 Feb 20;52(4):2108-2117 - PubMed

Publication Types